David Froelicher's Personal Page
David Froelicher's Personal Page
Home
Publications
Talks
Awards
Thesis
Experience
Teaching
Reviewer
Light
Dark
Automatic
Publications
Type
Conference paper
Journal article
Book
Date
2023
2021
2020
2017
Secure and Federated Genome-Wide Association Studies for Biobank-Scale Datasets
Sharing data across multiple institutions for genome-wide association studies (GWAS) would enable discovery of novel genetic variants …
H. Cho
,
David Froelicher
,
J. Chen
,
M. Edupalli
,
A. Pyrgelis
,
J. R. Troncoso-Pastoriza
,
J.-P. Hubaux
,
B. Berger
PDF
Cite
Code
Link
Scalable and Privacy-Preserving Federated Principal Component Analysis
Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the …
David Froelicher
,
H. Cho
,
M. Edupalli
,
J. S. Sousa
,
J.-P. Bossuat
,
A. Pyrgelis
,
J. R. Troncoso-Pastoriza
,
J.-P. Hubaux
,
B. Berger
PDF
Cite
Link
Trailer Video
sfkit: A Web-Based Toolkit for Secure and Federated Genomic Analysis
Advances in genomics are increasingly depending upon the ability to analyze large and diverse genomic data collections, which are often …
S. Mendelsohn
,
David Froelicher
,
D. Loginov
,
D. Bernick
,
B. Berger
,
H. Cho
Cite
Truly Privacy-Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic Encryption
Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities …
David Froelicher
,
J. R. Troncoso-Pastoriza
,
J. L. Raisaro
,
M. Cuendet
,
J. S. Sousa
,
H. Cho
,
B. Berger
,
J. Fellay
,
J.-P. Hubaux
PDF
Cite
DOI
Link
Scalable Privacy-Preserving Distributed Learning
In this paper, we address the problem of privacy-preserving distributed learning and the evaluation of machine-learning models by …
David Froelicher
,
J. R. Troncoso-Pastoriza
,
A. Pyrgelis
,
S. Sav
,
J. S. Sousa
,
J.-P. Bossuat
,
J.-P. Hubaux
PDF
Cite
Slides
Link
Talk
POSEIDON: Privacy-Preserving Federated Neural Network Learning”
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an N-party, federated …
S. Sav
,
A. Pyrgelis
,
J. R. Troncoso-Pastoriza
,
David Froelicher
,
J.-P. Bossuat
,
J. S. Sousa
,
J.-P. Hubaux
PDF
Cite
DOI
Link
Ultra-Fast Homomorphic Encryption Models enable Secure Outsourcing of Genotype Imputation
Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing …
M. Kim
,
A.Harmanci
,
J.-P. Bossuat
,
S. Carpov
,
J. H. Cheon
,
I. Chillotti
,
W. Cho
,
David Froelicher
,
N. Gama
,
M. Georgieva
,
S. Hong
,
J.-P. Hubaux
,
D. Kim
,
K. Lauter
,
Y. Ma
,
L. Ohno-Machado
,
H. Sofia
,
Y. Son
,
Y. Song
,
J. Troncoso-Pastoriza
,
X. Jiang
PDF
Cite
Link
Code
Privacy-Preserving Data Sharing and Computation Across Multiple Data Providers with Homomorphic Encryption
J.R. Troncoso-Pastoriza
,
David Froelicher
,
P. Hu
,
A. Aloufi
,
J.P. Hubaux
Cite
Link
MedCo^2: Privacy-Preserving Cohort Exploration and Analysis
David Froelicher
,
M. Misbach
,
J. R. Troncoso-Pastoriza
,
J.L. Raisaro
,
J.-P. Hubaux
PDF
Cite
Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed Datasets
Data sharing has become of primary importance in many domains such as big-data analytics, economics and medical re- search, but remains …
David Froelicher
,
J.R. Troncoso-Pastoriza
,
J.S. Sousa
,
J.P. Hubaux
PDF
Cite
Link
Code
UnLynx: A Decentralized System for Privacy-Conscious Data Sharing
Current solutions for privacy-preserving data sharing among multiple parties either depend on a centralized authority that must be …
David Froelicher
,
P. Egger
,
J. S. Sousa
,
J. L. Raisaro
,
Z. Huang
,
C. Mouchet
,
B. Ford
,
J.-P. Hubaux
PDF
Cite
Link
Talk
Code
Slides
SPORT: Sharing Proofs of Retrievability across Tenants
Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret …
F. Armknecht
,
J.-M. Bohli
,
G. Karame
,
David Froelicher
PDF
Cite
Link
Cite
×