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SUMMARY
Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are
predicted using the existing genotypes of nearby ‘‘tag’’ variants. Although researchers can outsource geno-
type imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service.
Here, we developed secure genotype imputation using efficient homomorphic encryption (HE) techniques.
In HE-based methods, the genotype data are secure while it is in transit, at rest, and in analysis. It can
only be decrypted by the owner. We compared secure imputation with three state-of-the-art non-secure
methods and found that HE-based methods provide genetic data security with comparable accuracy for
common variants. HE-based methods have time and memory requirements that are comparable or lower
than those for the non-secure methods. Our results provide evidence that HE-basedmethods can practically
perform resource-intensive computations for high-throughput genetic data analysis. The source code is
freely available for download at https://github.com/K-miran/secure-imputation.
INTRODUCTION

Whole-genome sequencing (WGS) (Ng and Kirkness, 2010;

Shendure et al., 2017) has become the standard technique in

clinical settings for tailoring personalized treatments (Rehm,

2017) and in research settings for building reference genetic da-

tabases (Schwarze et al., 2018; 1000 Genomes Project Con-

sortium, 2015; Chisholm et al., 2013). Technological advances

in the last decade enabled a massive increase in the throughput

of WGSmethods (Heather and Chain, 2016), which provided the

opportunity for population-scale sequencing (Goldfeder et al.,
1108 Cell Systems 12, 1108–1120, November 17, 2021 ª 2021 The A
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2017), where a large sample from a population is sequenced

for studying ancestry and complex phenotypes (Lango Allen

et al., 2010 throughout the article Locke et al., 2015), as well as

rare (Agarwala et al., 2013; Gibson, 2012; Chen et al., 2019)

and chronic diseases (Cooper et al., 2008). Although the price

of sequencing has been decreasing, the sample sizes are

increasing to accommodate the power necessary for new

studies. It is anticipated that tens of millions of individuals will

have access to their personal genomes in the next few years.

The increasing size of sequencing data creates new chal-

lenges for sharing, storage, and analyses of genomic data.
uthors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Among these, genomic data security and privacy have received

much attention in recent years. Most notably, the increasing

prevalence of genomic data, e.g., direct-to-consumer testing

and recreational genealogy, makes it harder to share genomic

data due to privacy concerns. Genotype data are very accurate

in identifying the owner because of their high dimensionality, and

leakage can cause concerns about discrimination and stigmati-

zation (Nissenbaum, 2009). Also, the recent cases of forensic us-

age of genotype data are making it very complicated to share

data for research purposes. The identification risks extend to

family members of the owner, since a large portion of the genetic

data are shared with relatives. Many attacks have been pro-

posed on genomic data sharing models, where the correlative

structure of the variant genotypes provides enough power to ad-

versaries to make phenotype inference and individual re-identifi-

cation possible (Nyholt et al., 2009). Therefore, it is of the utmost

importance to ensure that genotype data are shared securely.

There is a strong need for new methods and frameworks that

will enable decreasing the cost and facilitate the analysis and

management of genome sequencing.

One of the main techniques used for decreasing the cost of

large-scale genotyping is in silico genotype imputation; i.e.,

measuring genotypes at a subsample of variants, e.g., using a

genotyping array, and then utilizing the correlations among the

genotypes of nearby variants (the variants that are close to

each other in genomic coordinates) and imputing themissing ge-

notypes using the sparsely genotyped variants (Howie et al.,

2011; Das et al., 2018; Marchini and Howie, 2010). Imputation

methods aim at capturing the linkage disequilibrium patterns

on the genome. These patterns emerge because genomic

recombination occurs at hotspots rather than at uniformly

random positions along the genome. The genotyping arrays

are designed around the idea of selecting a small set of ‘‘tag’’

variants, as small as 1% of all variants, that optimize the trade-

off between cost and imputation accuracy (Hoffmann et al.,

2011; Stram, 2004). Imputation methods learn the correlations

among variant genotypes by using population-scale sequencing

projects (Loh et al., 2016). In addition to filling in missing geno-

types, the imputation process has many other advantages.

Combining low-cost array platforms with computational geno-

type imputation methods decreases genotyping costs and in-

creases the power of genome-wide association studies

(GWASs) by increasing sample sizes (Tam et al., 2019). Accurate

imputation can also greatly help with the fine-mapping of causal

variants (Schaid et al., 2018) and is vital for meta-analysis of the

GWAS (Evangelou and Ioannidis, 2013). Genotype imputation is

now a standard and integral step in performing GWAS. Although

imputation methods can predict only the variant genotypes that

exist in the panels, the panels’ sample sizes are increasing

rapidly; e.g., in projects such as TOPMed (Taliun et al., 2019;

TOPMed, 2016) will provide training data for imputationmethods

to predict rarer variant genotypes, and this can increase the

sensitivity of GWAS.

Although imputation and sparse genotypingmethods enable a

vast decrease in genotyping costs, they are computationally very

intensive and require management of large genotype panels and

interpretation of the results (Howie et al., 2012). The imputation

tasks can be outsourced to third parties, such as the Michigan

Imputation Server, where users upload the genotypes (as a
Variant Call Format, VCF, file) to a server that performs imputa-

tion internally using a large computing system. The imputed ge-

notypes are then sent back to the user. However, there are major

privacy (Naveed et al., 2015) and data security (Berger and Cho,

2019) concerns over using these services, since the genotype

data are analyzed in plaintext format where any adversary who

has access to the third party’s computer can view, copy, or

even modify the genotype data. As genotype imputation is one

of the central initial steps in many genomic analysis pipelines,

it is essential that the imputation be performed securely to

ensure that these pipelines can be computed securely as a

whole. For instance, although several secure methods for

GWAS have been developed (Cho et al., 2018), if genotype impu-

tation (a vital step in GWAS analyses) is not performed securely,

it is not possible to make sure GWAS analysis can be performed

securely.

In order to test the current state-of-the-art methodologies for

benchmarking the feasibility of the cryptographic methods for

genotype imputation, we organized the genotype imputation

track in iDASH2019 Genomic Privacy Challenges. This track

benchmarkedmore than a dozenmethods on a small scale (sup-

plemental information; Table S1) to rank the most promising

approaches for secure genotype imputation. The methods

developed by the top winning teams led us (organizers and con-

testants) to perform this study to report a more comprehensive

analysis of the secure genotype imputation framework, including

benchmarks with state-of-the-art methods. We developed and

implemented several approaches for secure genotype imputa-

tion. Our methods make use of the homomorphic encryption

(HE) formalism (Gentry, 2009) that provides mathematically

provable, and potentially one of the strongest security guaran-

tees for protecting genotype data while imputation is performed

in an untrusted semi-honest environment. To include a compre-

hensive set of approaches, we focus on three state-of-the-art HE

cryptosystems, namely, Brakerski/Fan-Vercauteren (BFV)

(Brakerski, 2012; Fan and Vercauteren, 2012), Cheon-Kim-

Kim-Song (CKKS) (Cheon et al., 2017), and the fully homomor-

phic encryption over the torus (TFHE) (Chillotti et al., 2020; Boura

et al., 2018). In our HE-based framework, genotype data are en-

crypted by the data owner before outsourcing the data. After this

point, the data always remain encrypted, i.e., encrypted in

transit, in use, and at rest; it is never decrypted until the results

are sent to the data owner. The strength of our HE-based frame-

work stems from the fact that the genotype data remain encryp-

ted even while the imputation is being performed. Hence, even if

the imputation is outsourced to an untrusted third party, any

semi-honest adversaries learn nothing from the encrypted

data. This property makes the HE-based framework very power-

ful. For an untrusted third party who does not have access to the

private key, the genotype data are indistinguishable from

random noise (i.e., practically of no use) at any stage of the impu-

tation process. Our HE framework provides the strongest form of

security for outsourcing genotype imputation compared with any

other approach under the same adversarial model.

HE-based frameworks have been deemed impractical since

their inception. Therefore, in comparisonwith other cryptograph-

ically secure methods, such as multiparty computation (Cho

et al., 2018) and trusted execution environments (Kockan et al.,

2020), HE-based frameworks have received little attention.
Cell Systems 12, 1108–1120, November 17, 2021 1109
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Recent theoretical breakthroughs in the HE literature and a

strong community effort (HES, n.d. 2020) have since rendered

HE-based systems practical. However, many of these improve-

ments are only beginning to be reflected in practical implemen-

tations and applications of HE algorithms. In this study, we

provide evidence for the practicality of the HE formalism by

building secure and ready-to-deploy methods for genotype

imputation. We perform detailed benchmarking of the time and

memory requirements of HE-based imputation methods and

demonstrate the feasibility of large-scale secure imputation. In

addition, we compared HE-based imputation methods with the

state-of-the-art plaintext, i.e., non-secure, imputation methods,

and we found comparable performance (with a slight decrease)

in imputation accuracy with the benefit of total genomic data

security.

WepresentHE-based imputationmethods in the context of two

main steps, as this enables a general modular approach. The first

step is imputation model building, where imputation models are

trained using the reference genotype panel with a set of tag vari-

ants (variant genotypes on an Illumina array platform) to impute

the genotypes for a set of target variants, e.g., common variants

in the 1,000 Genomes Project (1000 Genomes Project Con-

sortium, 2015) samples. The second step is the secure imputation

step, where the encrypted tag variant genotypes are used to pre-

dict the target genotypes (which are encrypted) by using the impu-

tation models trained in the first step. This step, i.e., imputation

model evaluation using the encrypted tag variant genotypes, is

where the HE-based methods are deployed. In principle, the

model training step needs to be performed only once when the

tag variants do not change, i.e., the same array platform is used

for multiple studies. Although these steps seem independent,

model evaluation is heavily dependent on the representation and

encoding of the genotype data, and the model complexity affects

the timing and memory requirements of the secure outsourced

imputation methods. However, our results suggest that linear

models (or any other model that can be approximated by linear

models) canbealmost seamlessly trainedandevaluatedsecurely,

where the model builders (1st step) and model evaluators (2nd

step) can work independently. However, our results also show

that there is an accompanying performance penalty, especially

for the rare variants, in using these models, and we believe that

new and accurate methods are needed to provide both privacy

and imputation accuracy. It should be noted that the performance

penalty stems not from HE-model evaluation but from the lower

performanceofplaintextmodels.Weprovideapipeline that imple-

ments both model training and evaluation steps so that it can be

runonany selection of tag variants.Wemake the implementations

publicly available, so that they can be used as a reference by the

computational genomics community.

RESULTS

Wepresent the scenario and the setting for secure imputation and

describe the secure imputation approaches we developed. Next,

we present accuracy comparisons with the current state-of-the-

art non-secure imputation methods and the time and memory re-

quirements of the secure imputationmethods. Finally, we present

the comparison of the time and memory requirements of our

secure imputation pipeline with the non-secure methods.
1110 Cell Systems 12, 1108–1120, November 17, 2021
Genotype imputation scenario
Figure 1A illustrates the secure imputation scenario. A researcher

genotypes a cohort of individuals by using genotyping arrays or

other targeted methods, such as whole-exome sequencing, and

calls the variants using a variant caller such as the Genome Anal-

ysis Toolkit, GATK (Depristo et al., 2011). After genotyping, the ge-

notypes are stored in plaintext, i.e., unencrypted and not secure

for outsourcing. Each variant genotype is represented by one of

the three values f0; 1; 2g, where 0 indicates a homozygous refer-

ence genotype, 1 indicates a heterozygous genotype, and 2 indi-

cates a homozygous alternate genotype. To secure the genotype

data, the researcher generates two keys: a public key for encrypt-

ing the genotype data and a private key for decrypting the

imputed data. The public key is used to encrypt the genotype

data into ciphertext, i.e., random-looking data that contain the ge-

notype data in a secure form. It is mathematically provable (i.e.,

equivalent to the hardness of solving the ring learning with errors,

or RLWE, problem, Lyubashevsky et al., 2010) that the encrypted

genotypes cannot be decrypted into plaintext genotype data by a

third party without the private key, which is in the possession of

only the researcher. Even if an unauthorized third party copies

the encrypted data without authorization (e.g., hacking, stolen

hard drives), they cannot gain any information from the data as

they are essentially random noise without the private key. The se-

curity (and privacy) of the genotype data are therefore guaran-

teed, as long as the private key is not compromised. The security

guarantee of the imputationmethods is based on the fact that ge-

notype data are encrypted in transit, during analysis, and at rest.

The only plaintext data that are transmitted to the untrusted entity

are the locations of the variants, i.e., the chromosomes and

positions of the variants. Since the variant locations are

publicly known for genotyping arrays, they should not leak any

information. However, when the genotyping is performed by

sequencing-based methods, the variant positions may leak infor-

mation, as we discuss more in the next sections.

The encrypted genotypes are sent through a channel to the

imputation service. The channel does not have to be secure

against an eavesdropper because the genotype data are encryp-

ted by the researcher. However, secure channels should be

authenticated to prevent malicious man-in-the-middle attacks

(Gangan, 2015). The encrypted genotypes are received by the

imputation service, an honest-but-curious entity, i.e., they will

receive the data legitimately and extract all the private informa-

tion they can from the data. However, a privacy breach is impos-

sible as the data are always encrypted when they are in the

possession of the imputation service. Hence, the only reason-

able action for the secure imputation server is to perform the ge-

notype imputation and to return the data to the researcher. It is

possible that the imputation server acts maliciously and inten-

tionally returns bad-quality data to the researcher using badly

calibrated models. However, it is economically or academically

reasonable to assume that this is unlikely, since it would be

easy to detect this behavior on the researcher’s side and to

advertise the malicious or low quality of the service to other re-

searchers. Therefore, we assume that the secure server is

semi-honest, and it performs the imputation task as accurately

as possible. However, more complex malicious entities that

perform complex attacks (e.g., slight biases in the models) are

harder to detect. We treat these scenarios as out of scope of
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Figure 1. Illustration of secure genotype imputation

(A) Illustration of the genotype imputation scenario. The incomplete genotypes aremeasured by genotyping arrays withmissing genotypes (represented by stars).

Encryption generates random-looking strings from the genotypes. At the server, encrypted genotypes are encoded, then they are used to compute the missing

variant genotype probabilities. The encrypted probabilities are sent to the researcher, who decrypts the probabilities and identifies the genotypes with the highest

probabilities (italic values).

(legend continued on next page)
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our current study. Providing secure services against malicious

entities is a worthwhile direction to explore for future studies.

After the receipt of the encrypted genotypes by the server, the

first step is recoding of the encrypted data into a packed format

(Figure S1) that is optimized for the secure imputation process.

This step is performed to decrease time requirements and to

optimize the memory usage of the imputation process. The

data are coded to enable analysis of multiple genotypes in one

cycle of the imputation process (Dowlin et al., 2017). The next

step is the secure evaluation of the imputationmodels, which en-

tails securely computing the genotype probability for each

variant by using the encrypted genotypes. The variants received

from the researcher are treated as tag variants whose genotypes

are used as features in the imputation model to predict the

‘‘target’’ variants, i.e., the missing variants (Figure 1B). For

each target variant, the corresponding imputation model uses

the genotypes of the nearby tag variants to predict the target

variant genotype in terms of genotype probabilities. In other

words, we use a number of nearby tag variants to build an impu-

tation model for the respective target variant such that the tag

variants that are nearby (in genomic coordinates) are treated

as the features for assigning genotype scores for the target

variant. After the imputation is performed, the encrypted geno-

type probabilities are sent to the researcher. The researcher de-

crypts the genotype probabilities by using a private key. The final

genotypes can be assigned using the maximum probability ge-

notype estimate, i.e., by selecting the genotype with the highest

probability for each variant.

Genotype imputation models
We provide five approaches implemented by four different

teams. For simplicity of description, we refer to the teams as

Chimera, EPFL, SNU, and UTHealth-Microsoft Research

(UTMSR) (see STAR Methods). Among these, CKKS is used in

three different approaches (EPFL-CKKS, SNU-CKKS, and

UTMSR-CKKS), and BFV and TFHE are each utilized by separate

approaches (UTMSR-BFV and Chimera-TFHE, respectively).

The teams independently developed and trained the plaintext

imputation models using the reference genotype panel dataset.

For each target variant, the tag variants in the vicinity of the target

variant are used for imputing the target variant, i.e., the tag var-

iants in the vicinity are used as features in the imputation models.

The chimera team trained a logistic regression model and the

EPFL team trained a multinomial logistic regression model. (Fig-

ure S4; Tables S3, S4, and S7); the SNU team used a 1-hidden-

layer neural network (Figures 1C, S2, and S3; Table S5); and the

UTMSR team trained a linear regression model (Figures 1C

and S5).

Genotype representation
All methods treat the genotypes as continuous predictions,

except for the Chimera and SNU teams who utilized a one-hot

encoding of the genotypes (see STAR Methods), e.g., 0/

ð1; 0; 0Þ, 1/ð0;1;0Þ, and 2/ð0; 0;1Þ.
(B) Building of the plaintext model for genotype imputation. The server uses a pub

models are stored in the plaintext domain. The model in the current study is a line

within a k variant vicinity of the target variant.

(C) The plaintext models implemented under the secure frameworks.
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Tag variant (feature) selection
The selection of the tag variants is important as these represent

the features that are used for imputing each target variant. In

general, we found that the models that use 30–40 tag variants

provide optimal results (for the current array platform) in terms

of imputation accuracy (Tables S2, S5, S6, and S8). As previous

studies have shown, tag variant selection can provide an in-

crease in imputation accuracy (Yu and Schaid, 2007). Finally,

we observed a general trend of linear scaling with the number

of target variants (as shown in Figure S6 and other Tables S1–

S9). This provides evidence that there is minimal extra overhead

(in addition to the linear increasing sample size) for scaling to

genome-wide and population-wide computations.

Training and secure evaluation of models
We present the accuracy comparison results further on. We

include extended discussion of the specific ideas used for

training and for secure evaluation of the genotype imputation

models in supplemental information.

Accuracy comparisons with the non-secure methods
Wefirst analyzed the imputation accuracy of the securemethods

with their plaintext (non-secure) counterparts that are the most

popular state-of-the-art imputation methods. We compared

secure imputation methods with IMPUTE2 (Howie et al., 2009),

Minimac3 (Das et al., 2016) (and Minimac4, which is an efficient

re-implementation of Minimac3), and Beagle (Browning et al.,

2018) methods. These plaintext methods utilize Hidden Markov

models (HMMs) for genotype imputation (see STAR Methods).

The population panels and the pre-computed estimates of the

recombination frequencies are taken as input to the methods.

Each method is set to provide a measure of genotype probabil-

ities, in addition to the imputed genotype values.

To perform comparisons in a realistic setting, we used the var-

iants on the Illumina Duo 1M version 3 array platform (Johnson

et al., 2013). This is a popular array platform that covers more

than 1.1 million variants and is used by population-scale geno-

typing studies such as HAPMAP (Belmont et al., 2003). We ex-

tracted the genotypes of the variants that were probed by this

array platform and overlapped with the variants identified by

the 1,000 Genomes Project population panel of 2,504 individ-

uals. For simplicity of comparisons, we focused on chromosome

22. The variants that are probed by the array are treated as the

tag variants that are used to estimate the target variant geno-

types. The target variants are defined as variants on chromo-

some 22 whose allele frequency is greater than 5% as estimated

by the 1,000 Genomes Project (1000 Genomes Project Con-

sortium, 2015). We used the 16,184 tag variants and 80,882

common target variants. Then, we randomly divided the 2,504

individuals into a training genotype panel of 1,500 samples and

a testing panel of 1,004 samples. The training panel is used as

the input to the plaintext methods (i.e., IMPUTE2, Minimac3-4,

and Beagle) and also for building the plaintext imputationmodels

of the secure methods. Each method is then used to impute the
licly available panel to build genotype estimation models for each variant. The

ar model where each variant genotype is modeled using genotypes of variants
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target variants using the tag variants. Figure 2A shows the com-

parison of genotype prediction accuracy computed over all the

predictions made by the methods. The non-secure methods

show the highest accuracy among all the methods. The secure

methods exhibit very similar accuracy, whereas the closest

method follows with only a 2%–3%decrease in accuracy. To un-

derstand the differences between the methods, we also

computed the accuracy of the non-reference genotype predic-

tions (see STAR Methods; Figure 2B). The non-secure methods

show slightly higher accuracy compared with the secure

methods. These results indicate that the proposed secure
methods provide perfect data privacy at the cost of a slight

decrease in imputation accuracy.

Next, we assessed whether the genotype probabilities (or

scores) computed from the secure methods provide meaningful

measures for choosing reliably imputed genotypes. For this, we

calculated the sensitivity and the positive predictive value (PPV)

of the imputed genotypes whose scores exceed the cutoff (see

STAR Methods). To analyze how cutoff selections affect the ac-

curacy metrics, we shifted the cutoff (swept the cutoff over the

range of genotype scores) so that the accuracy is computed

for the most reliable genotypes (high cutoff) and for the most
Cell Systems 12, 1108–1120, November 17, 2021 1113
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inclusive genotypes (low cutoff). We then plotted the sensitivity

versus the PPV (Figure 2C). Compared with the secure methods,

the non-secure methods generally show higher sensitivity at the

same PPV. However, secure methods can capture more than

80% of the known genotypes with 98% accuracy. The same re-

sults hold for the non-reference genotypes’ prediction accuracy

(Figure 2D). These results indicate that secure genotype predic-

tions can be filtered by setting cutoffs to improve accuracy.

We also evaluated the population-specific effects on imputa-

tion accuracy. For this, we divided the testing panel into three

populations—210 European (EUR), 135 American (AMR), and

272 African (AFR) samples—as provided by the 1,000 Genomes

Project. The training panel yielded 389 AFR, 212 AMR, and 293

EUR samples. Figures 3A and 3B show genotype and non-refer-

ence genotype accuracy for EUR, respectively. We observed

that the non-secure and secure methods are similar in terms of

accuracy. We observed that the secure CKKS (UTMSR-CKKS)

scheme with a linear prediction model outperformed Beagle in

the EUR population, with marginally higher accuracy. We

observed similar results for AMR populations where the non-

secure methods performed at the top and secure methods

showed very similar but slightly lower accuracy (Figures 3C

and 3D). For AFR populations, the non-reference genotype pre-

diction accuracy is lower for all the methods (Figures 3E and 3F).

This is mainly rooted in the fact that the African populations show

distinct properties that are not yet well characterized by the

1,000 Genomes Panels. We expect that the larger panels can

provide better imputation accuracy.

To further investigate the nature of the imputation errors, we

analyzed the characteristics of imputation errors of eachmethod

by computing the confusion matrices (Figure S7). We found that

themost frequent errors aremadewhen the real genotype is het-

erozygous, and the imputed genotype is a homozygous refer-

ence genotype. The pattern holds predominantly in secure and

non-secure methods, although the errors are slightly lower, as

expected, for the non-secure methods. Overall, these results

indicate that secure imputation models can provide genotype

imputations comparable with their non-secure counterparts.

To test the performance of the methods on rare variants, we

focused on the 117,904 variants whose minor allele frequency

(MAF) is between 0.5% and 5%. These variants represent harder

to impute variants since they are much less represented

comparedwith the common variants. The results show that the vi-

cinity-based approaches that our methods use show a clear

decrease in performance compared with the HMM-based ap-

proaches (Figure 3G). This is expected since our approaches

depend heavily on the existence of well-represented training

datasets. In the rare variants, however, the number of training

examples for the non-reference genotypes goes as low as 1 or

2 examples over 1,000 individuals. That is why we observed a

substantial decrease in the imputation power in our methods.

Interestingly, we observed that the more complex methods (Chi-

mera’s logistic regression and SNU’s neural network approach)

provided comparably better accuracy than the ordinary linear
(F). Precision-recall curve for rare variants (G). The boxplots illustrate the super-p

(top) and un-common variants (bottom)

(H). ALL indicates the MAF distribution for all populations. The center and the t

distributions.
model, which suggests that the more complex vicinity-based

models can perform more accurate imputation for rare variants.

In summary to this comparison, the rare variants represent

challenging cases and a limitation for vicinity-based secure

approaches.

It should be noted that a substantial portion of the rare variants

are shown to be population specific (Bomba et al., 2017). To test

for this, we analyzed the population specificity of the variants by

computing the population-specific AF of these variants. We

observed that most of the rare variants show enrichment in the

African populations (Figure 3H) with a median MAF of around

2%–3% for AFR. Compared with the rare variants, the common

variants showed a much more frequent and more uniform repre-

sentation among the populations. These results highlight that

rare variants can potentially be more accurately imputed using

population-specific panels, which is in concordance with previ-

ous studies (Kowalski et al., 2019). Finally, from the perspective

of downstream analyses, such as GWAS, high allele frequency

variants are much more useful, since even the highly powered

GWAS studies perform stringent MAF cutoffs at 2%–3% to

ensure that the causal variants are not false positives (Sung

et al., 2018).

Timing and memory requirements of secure imputation
methods
One of the main critiques of HE methods is that they are imprac-

tical due to memory and time requirements. Therefore, we

believe that themost important challenge is tomakeHEmethods

practical in terms of memory and time. To assess and demon-

strate the practicality of the secure methods, we performed a

detailed analysis of the time andmemory requirements of secure

imputation methods. We divided the imputation process into

four steps (key generation, encryption, secure model evaluation,

and decryption), andwemeasured the time and the overall mem-

ory requirements. Figure 4A shows the detailed time require-

ments for each step. In addition, we studied the scalability of

secure methods. For this, we report the time requirements for

20,000 (20K), 40,000 (40K), and 80,000 (80K) target variants to

present how the time requirements scale with the number of

target variants. The secure methods spend up to 10 ms for key

generation. In the encryption step, all methods were well below

2 s. The most time-consuming step of evaluation took less

than 10 s, even for the largest set of 80K variants. Decryption,

the last step, took less than 2 s. Except for the key generation

and encryption, all methods exhibited linear scaling with the

increasing number of target variants. Overall, the total time spent

in secure model evaluation took less than 25 s (Figure 4B). This

could be ignored when compared with the total time require-

ments of the non-secure imputation. Assuming that time usage

scales linearly with the number of target variants (Figure 3A), 4

million variants can be evaluated in approximately 1,250 s, which

is less than half an hour. In other terms, secure evaluation is

approximately 312 ms. per variant per 1,000 individuals ð25 s 3

1; 000 individualsÞ. It can be decreased even further by scaling
opulation-specific minor allele frequency distribution (y axis) for the common

wo ends of the boxplots show the median and 25%–75% values of the MAF
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Figure 4. Memory and time requirements of the secure methods

(A–C) Eachmethod is divided into 4 steps: (1) key generation, (2) encryption, (3) evaluation, and (4) decryption. The bar plots show the time requirements (A) using

20K, 40K, and 80K target variant sets. The aggregated time (B) and the maximum memory usage of the methods are also shown (C).

ll
OPEN ACCESS Methods
to a higher number of CPUs (i.e., cores on local machines or in-

stances on cloud resources). In terms of memory usage, all

methods required less than 15 gigabytes of main memory, and

three of the five approaches required less than 5 gigabytes (Fig-

ure 4C). These results highlight the fact that secure methods

could be deployed on even the commodity computer systems.

The training of the methods on rare variants were performed to

ensure the assigned scores are best tuned for the unbalanced

training data in rare variants. The Chimera and SNU teams

(best performing methods) have a diverse range of requirements
1116 Cell Systems 12, 1108–1120, November 17, 2021
for secure evaluation where the neural network approach

(SNU) requires high resources, whereas the logistic regression

approach has much more practicable resource requirements

(Tables S9 and S10).

Resource usage comparison between secure and non-
secure imputation methods
An important aspect of practicality is whether the methods are

adaptable to different tag variants. This issue arises when a

new array platform is used for genotyping tag variants with a



A

B C

Figure 5. Comparison of time and memory

requirements of methods

(A– C) The secure outsourced imputation service (A),

time (B), and memory requirements (C) are illus-

trated in the bar plots where colors indicate security

context. The y axis shows the time (in seconds) and

main memory (in gigabytes) used by eachmethod to

perform the imputation of the 80K variants where the

secure outsourced method includes the plaintext

model training and secure model evaluation steps.
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new set of tag variant loci. In this case, the current security

framework requires that the plaintext models must be re-param-

etrized, and thismay require a large amount of time andmemory.

To evaluate this, we optimized the linear models for the UTMSR-

CKKS approach and measured the total time (training and eval-

uation) and the memory for the target variant set.

In order to make the comparisons fair with the HMM-based

methods, we included the rare variants and common variants

in this benchmark where the variants with MAF greater than

0.5% are used. In total, we used the 200,976 target variants in

this range. In this way, we believe that we perform a fair compar-

ison of resource usage with other non-secure methods. We

assumed that the training and secure evaluation would be run

sequentially, and we measured the time requirement of the

secure approach by summing the time for key generation,

encryption, secure evaluation, decryption, and the time for

training. For memory, we computed the peak memory required

for training and the peak memory required for secure evaluation.

These time and memory requirements provided us with an esti-

mate of the resources used by the secure pipeline (Figure 5A)

that can be fairly compared with the non-secure methods.

We measured the time and memory requirements of all the

methodsbyusingadedicatedcomputercluster toensure resource

requirements are measured accurately (see STAR Methods). For
Cell System
IMPUTE2, therewasnooption for specifying

multiple threads. Hence, we divided the

sequenced portion of chromosome 22 into

16 regions and imputed variants in each re-

gion inparallel using IMPUTE2, as instructed

by the manual, i.e., we ran 16 IMPUTE2 in-

stances inparallel to complete the computa-

tion. We then measured the total memory

required by all 16 runs and used this as the

memory requirement by IMPUTE2. We

used the maximum time among all the 16

runs, as the time requirements by parallel-

ized IMPUTE2. Beagle, Minimac3, and

Minimac4 were run with 16 threads, as this

option was available in the command line.

In addition, Minimac4 requires model

parametrization and preprocessing of the

reference panel, which requires large CPU

time. Therefore, we included this step in

the timing requirements. Figures 5B and 5C

show the time and memory requirements,

respectively, of the three non-secure ap-

proaches and our secure method. The re-

sults show that the secure pipeline provides
competitive timing (2nd fastest after Beagle) and memory require-

ments (3rd in terms of least usage after Minimac3 and Minimac4).

Our results also show that Minimac3/Minimac4 and our secure

approach provided a good trade-off betweenmemory and timing,

because Beagle and IMPUTE2 exhibit the highest time or highest

memory requirements compared with other methods.

We also compared the secure models and found that different

secure models exhibit diverse accuracy depending on allele fre-

quency and position of variants (supplemental information).

DISCUSSION

We presented fully secure genotype imputation methods that

can practically scale to genome-wide imputation tasks by using

efficient HE techniqueswhere the data are encrypted in transit, in

analysis, and at rest. This is a unique aspect of the HE-based

frameworks because, when appropriately performed, encryption

is one of the few approaches that are recognized at the legisla-

tive level as a way of secure sharing of biomedical data, e.g.,

by HIPAA (Wilson, 2006) and partially by GDPR (Hoofnagle

et al., 2019).

Our study was enabled by several key developments in the

fields of genomics and computer science. First, the recent theo-

retical breakthroughs in the HE techniques have enabled
s 12, 1108–1120, November 17, 2021 1117
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massive increases in the speed of secure algorithms. Although

much of the data science community still regards HE as a theo-

retical and not-so-practical framework, the reality is far from this

image. We hope that our study can provide a reference for the

development of privacy-aware and fully secure approaches

that employ HE. Second, the amount of genomic data have

increased several orders of magnitude in recent years. This pro-

vides enormous genotype databases where we can train the

imputation models and test them in detail before implementing

them in secure evaluation frameworks. Another significant devel-

opment is the recent formation of genomic privacy communities

and alliances, i.e., Global Alliance for Genomic Health (GA4GH),

where researchers build interdisciplinary approaches for devel-

oping privacy-aware methods. For example, our international

study stemmed from the 2019 iDASH Genomic Privacy Chal-

lenge. We firmly believe that these communities will help bring

together further interdisciplinary collaborations for the develop-

ment of secure genomic analysis methods.

The presented imputation methods train an imputation model

for each target variant. Our approach handlesmillions of models,

i.e., parameters. Unlike the HMM models that can adapt seam-

lessly to a new set of tag variants (i.e., a new array platform),

our approaches need to be retrained when the tag variants are

updated. We expect that the training can be performed a-priori

for a new genotyping array and that it can be reused in the impu-

tation. The decoupling of the (1) plaintext training and (2) secure

evaluation steps is very advantageous, because plaintext

training can be independently performed at the third party

without the need to wait for the data to arrive. This way, the users

would have to accrue only the secure evaluation time, that is, as

our results show, much smaller compared with the time require-

ments of the non-secure models, as small as 312 ms per variant

per 1,000 individuals. Nevertheless, even with the training, our

results show that the secure imputation framework can train

and evaluate in run times comparable with plaintext (non-secure)

methods. In the future, we expect many optimizations can be

introduced to the models we presented. For example, we fore-

see that the linear model training can be replaced with more

complex feature selection and training methods. Deep neural

networks are potential candidates for imputation tasks, as they

can be trained for learning the complex haplotype patterns to

provide better imputation accuracy (Das et al., 2018). With the

introduction of the graphical processing units (GPUs) on the

cloud, these models can be trained and evaluated securely

and efficiently. It is, however, important to be thorough about

the security of the data because, as we mentioned before,

even the number of untyped target variants that the researcher

sends to the server can leak some information about the data-

sets. These stealthy leakages highlight the importance of using

semantic security approaches. It is important to note that the

secure evaluation steps implemented in our study replicate the

results of the plaintext models almost exactly, which indicates

that ‘‘HE-conversion’’ does not accrue any performance penalty.

Our study aims to spearhead the feasibility of secure genotype

imputation in a high-throughput manner. As such, there are

currently numerous limitations that must be overcome in future

studies (supplemental information). For example, our ap-

proaches provide suboptimal accuracy when compared with

non-secure methods, especially for rare variants. As we
1118 Cell Systems 12, 1108–1120, November 17, 2021
mentioned earlier, we foresee that our methods can be opti-

mized in numerous ways. For instance, it has been previously

shown that the vicinity-based methods can make use of tag sin-

gle nucleotide polymorphism (SNP) selection to increase accu-

racy (Yu and Schaid, 2007). We are also foreseeing that new

methods can be adapted on the hard-to-impute regions (Duan

et al., 2013; Chen and Shi, 2019) to provide higher accuracy

for these regions with complex haplotype structures.

Finally, we believe that the multitude of models and the secure

evaluation approaches that we presented here can help provide

a much needed reference point for the development and

improvement of the imputation methods. Moreover, the devel-

oped models can be easily adapted to solve other privacy-sen-

sitive problems by using secure linear, logistic, and network

model evaluations, such as the secure rare variant association

tests (Wu et al., 2011). Therefore, we believe that our codebases

represent an essential resource for the computational genomics

community. We have organized the codebases to ensure that

they can be most accessible to the users without the necessary

cryptography expertise. We are hoping that our codebase can

provide a central role in the development of a community (similar

to dynverse (dynverse, n.d.) or TAPE (TAPE, n.d. 2019; Rao et al.,

2019) repositories for trajectory inference and protein embed-

ding, respectively) where users can use the developed methods

and datasets for uniform benchmarking of their new imputation

methods.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The chromosome 22 genotype calls

the 2,504 individuals in The 1000

Genomes Project’s 3rd phase.

The 1000 Genomes Consortium ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/release/20130502/ALL.chr22.

phase3_shapeit2_mvncall_integrated_

v5a.20130502.genotypes.vcf.gz

Illumina Duo version 3 genotyping

array documentation

Illumina Inc. Web Site https://support.illumina.com/downloads/

human1m-duo_v3-0_product_files.html

Source Data for Figures 1, 2, 3, 4,

and 5 and supplemental information

This work https://doi.org/10.5281/zenodo.4947832

Software and algorithms

R Statistical Computing Platform The R Foundation https://www.r-project.org/

Source Code and Documentation

for Secure Imputation Models

This work https://doi.org/10.5281/zenodo.4948000

Source Code for generating Figures 1,

2, 3, 4, and 5 and the Figures S1–S8

This work https://doi.org/10.5281/zenodo.4947832
We present and describe the data sources, accuracy metrics, and non-secure imputation method parameters. The detailed

methods are presented in the supplemental information.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Arif Har-

manci (arif.o.harmanci@uth.tmc.edu).

Materials availability
This study did not generate new materials.

Variant and genotype datasets
All the tag and target variant loci, and the genotypes are collected from the public resources. We downloaded the Illumina Duo 1M

version 3 variant loci from the array’s specification at the Illumina web site (https://support.illumina.com/downloads/human1m-

duo_v3-0_product_files.html). The file was parsed to extract the variants on chromosome 22, which yielded 17,777 variants. We

did not use the CNVs and indels while filtering the variants and we focused only on the single nucleotide polymorphims (SNPs).

We then intersected these variants with the 1000Genomes variants on chromosome 22 to identify the array variants that are detected

by the 1000Genomes Project. We identified 16,184 variants from this intersection. This variant set represents the tag variants that are

used to perform the imputation. The phased genotypes on chromosome 22 for the 2,504 individuals in the 1000 Genomes Project are

downloaded from the NCBI portal (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/ALL.chr22.phase3_shapeit2_

mvncall_integrated_v5a.20130502.genotypes.vcf.gz). We filtered out the variants for which the allele frequency reported by the

1000 Genomes Project is less than 5%. After excluding the tag variants on the array platform, we identified 83,072 target variants

that are to be used for imputation. As the developed secure methods use vicinity variants, the variants at the ends of the chromo-

some are not imputed. We believe this is acceptable because these variants are located very close to the centromere and at the

very end of the chromosome. After filtering the non-imputed variants, we focused on the 80,882 variants that were used for consis-

tent benchmarking of all the secure and non-secure methods.

Accuracy benchmark metrics
We describe the genotype level and variant level accuracy. For each variant, we assign the genotype with the highest assigned ge-

notype probability. The variant level accuracy is the average variant accuracy where each variant’s accuracy is estimated based on

how well these imputed genotypes of the individuals match the known genotypes:
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Variant Acc: =

�
1

# of Variants

�
3
X
i

�
# Correctly Imputed Individuals for Variant i

# of Individuals for Variant i

�
:

Variant level accuracy is also referred to as the macro-aggregated accuracy.

At the genotype level, we simply count the number of correctly computed genotypes and divide this with the total number of

genotypes:

Genotype Acc: =

P
ið# Correctly Imputed Individuals for Variant iÞP

ið# of Individuals for Variant iÞ :

In the sensitivity vs positive predictive value (PPV) plots, the sensitivity and PPV are computed after filtering the imputed genotypes

with respect to the imputation probability. We compute the sensitivity at the probability cutoff of t is:

Senst =

P
ið# Correctly Imputed Individuals for Variant i whose genotype probability>tÞP

ið# of Individuals for Variant iÞ
Positive predictive value measures the fraction of correctly imputed genotypes among the genotypes whose probability is above

the cutoff threshold:

PPVt =

P
ið# Correctly Imputed Individuals for Variant i whose genotype probability>tÞP

ið# Individuals for Variant i whose genotype probability>tÞ
Next, we swept a large cutoff range for t from -5 to 5 with steps 0.01. We finally plotted the sensitivity versus PPV to generate the

precision-recall curves for each method.

Micro-AUC accuracy statistics
For parameterizing the accuracy and demonstrating how different parameters affect algorithm performance, we used micro-AUC as

the accuracy metric. This was also the original accuracy metric for measuring the algorithm performance in iDASH19 competition.

Micro-AUC treats the imputation problem as a three-level classification problem where each variant is ‘‘classified’’ into one of three

classes, i.e., genotypes, f0;1; 2g. Micro-AUC computes an AUCmetric for each genotype then microaggregates the AUCs for all the

genotypes. This enables assigning one score to a multi-class classification problem. We use the implementation in scikit-learn pack-

age to measure the micro-AUC scores for each method (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

roc_auc_score.html).

Measurement of time and memory requirements
For consistently measuring the time and memory usage among all the benchmarked methods, we used /usr/bin/time -f %e ‘‘yt’’ %

M" to report the wall time (in seconds) and peak memory usage (in kilobytes) of each method.

Secure methods
We briefly describe the secure methods.

UTMSR-BFV and UTMSR-CKKS
The UTMSR (UTHealth-Microsoft Research) team uses a linear model with the nearby tag variants as features for each target variant.

The plaintext model training is performed using the GNU Scientific Library. The collinear features are removed by performing the SVD

and removing features with singular values smaller than 0.01. The target variant genotype is modeled as a continuous variable that

represents the ‘‘soft’’ estimate of the genotype (or the estimated dosage of the alternate allele) and can take any value from negative

to positive infinity. The genotype probabilities are assigned by converting the soft genotype estimation to a score in the range [0,1]:

pðgÞ = expð � 1 3 j~g�gjÞ;g˛f0;1; 2g; (Equation 1)

where g denotes one of the genotypes and ~g represents the decrypted value of the imputed genotype estimate. Suppose that each

variant genotype is modeled using genotypes of variants within k variant vicinity of the variant. In plaintext domain, the imputed value

can be written as follows:

~gj = wj;0 +
Xk

r =1

�
w�

j;r 3 gj�r

�
+
Xk

r = 1

�
w+

j;r 3 gj + r

�
; (Equation 2)

wherewj;0 is the intercept of the linear model, andw�
j;r andw+

j;r denote the linear model weights for the jth target variant’s rth upstream

and downstream tag variants, respectively.

The secure outsourcing imputation protocols are implemented on two popular ring-based HE cryptosystems – BFV (Brakerski,

2012; Fan and Vercauteren, 2012) and CKKS (Cheon et al., 2017). These HE schemes share the same parameter setup and key-gen-

eration phase but have different algorithms for message encoding and homomorphic operations. In a nutshell, a ciphertext is gener-

ated by adding a random encryption of zero to an encoded plaintext, which makes the ring-based HE schemes secure under the
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RLWE assumption. More precisely, each tag variant is first encoded as a polynomial with its coefficients, and the encoded plaintext is

encrypted into a ciphertext using the underlying HE scheme. The plaintext polynomial in the BFV scheme is separated from an error

polynomial (inserted for security), whereas the plaintext polynomial in the CKKS scheme embraces the error. Then Equation 2 is ho-

momorphically evaluated on the encrypted genotype data by using the plain weight parameters. We exploit parallel computation on

multiple individual data, and hence it enables us to obtain the predicted genotype estimates over different samples at a time. Our

experimental results indicate that the linear model with 32 tag variants as features for each target variant shows the most balanced

performance in terms of timing and imputation accuracy in the current testing dataset (see Table S8 and Figure S5). Our protocols

achieve at least a 128-bit security level from the HE standardization workshop paper (Albrecht et al., 2018). We defer the complete

details to the ‘‘UTHealth-Microsoft Research team solution’’ section in the supplementary document.

Chimera-TFHE
The Chimera team used multi-class logistic regression (logreg) models trained over one-hot encoded tag features: each tag SNP

variant is mapped to 3 Boolean variables. Chimera’s model training and architecture performed the best (with respect to accuracy

and resource requirement) among six other solutions in the iDASH2019 Genotype Imputation Challenge.

We build three models per target SNP (one model per variant), i.e., target SNPs are also one-hot-encoded. These models give the

probabilities for each target SNP variant. The maximal probability variant is the imputed target SNP value. A fixed number d of the

nearest tag SNPs (in relation to the current target SNP) are used in model building. We train the models with different values of d in

order to study the influence of neighborhood size: from 5 to 50 neighbors with an increment of 5. Themost accuratemodel, in terms of

micro-AUC score, is obtained for a neighborhood size d = 45. The fastest model with an acceptable accuracy (micro� AUC> 0:99) is

obtained for d = 10. Although, the execution time of the fastest model is onlyz2 times faster compared to the most accurate model

(refer to Table S2 ).

During the homomorphic evaluation, only the linear part of the logreg model is executed, which means in particular that we do not

homomorphically apply the sigmoid function on the output scores. We use the coefficient packing strategy and pack as many plain-

text values as possible in a single ciphertext. Themaximum number of values that can be packed in aRingLWE ciphertext equals the

used ring dimension, which is n= 1024 in our solution. We chose to pack one or several columns of the input (tag SNPs) into a single

ciphertext. Since the TFHE libraryRingLWE ciphertexts encrypt polynomials with Torus (T = Rmod1) coefficients, we downscale the

data to Torus values (multiples of 2�14) and upscale the model coefficients to integers.

In our solution, we use linear combinations with public integer coefficients. The evaluation is based on the security of LWE and only

the encryption phase uses RingLWE security notions with no additional bootstrapping or key-switching keys. The security param-

eters have been tuned to support binary keys. Of course, as neither bootstrapping nor key-switching is used in our solution, the key

distribution can be changed to any distribution (including the full domain distribution) without any time penalty. Our scheme achieves

130 bits of security, according to the LWE estimator (Albrecht et al., 2015). More information about the our solution is described in the

supplementary document (‘‘Chimera-TFHE team solution’’).

EPFL-CKKS
EPFL uses amultinomial logistic regression model with d � 1 neighboring coefficients and 1 intercept variable for each target variant,

with three classes {0,1,2}. The plaintext model is trained using the scikit-learn python library. The input variants are represented

as values {0,1,2}. There is no pre-processing applied to the training data. For a target position j, the predicted probabilities for each

class label are given by:

P
�
y = g

��zðp;jÞr

�
=

ew
ð,;j;gÞ
0

+
Pd�1

r =1
w
ð,;j;gÞ
r

P2
i = 0e

w
ð,;j;iÞ
0

+
Pd�1

r =1
w
ð,;j;iÞ
r z

ðp;j;,Þ
r

; (Equation 3)

where fwð,;j;gÞ
0 ;.;w

ð,;j;gÞ
d�1 g are the trained regression coefficients for label g˛f0;1;2g and position j, and fzðp;j;,Þ1 ;.; z

ðp;j;,Þ
d�1 g are the

neighboring variants for patient p around target position j. The hard prediction for position j is given by yðp;j;gÞ = argmaxgðP½y =

g
���zðp;jÞr �Þ. The variants fzðp;j;,Þ1 ;.; z

ðp;j;,Þ
d�1 g are sent encrypted and packed to the server, using the CKKS homomorphic cryptosystem,

and the exponents in Equation 3 are computed homomorphically. The client decrypts the result and can obtain the label probabilities

and hard predictions for each position. For the prediction, we use several numbers of regression coefficients, ranging from 8 to 64; as

this number increases, both the obtained accuracy and the computational complexity increase (see Table S6). We use a single

parametrization of the cryptosystem (see the ‘‘EPFL-Lattigo team solution’’ section in the supplemental information) for all the regres-

sion sizes, which keeps the cipher expansion asymptotically constant. The security of this solution is based on the hardness of the

RLWE problem with Gaussian secrets.

SNU-CKKS
The SNU team applies one-hidden layer neural network for the genotype imputation. The model is obtained from Tensorflow module

in plain (unencrypted) state, and the inference phase is progressed in encrypted stated for given test SNP data encrypted by the

CKKS HE scheme. We encode each ternary SNP data into a 3-dimensional binary vector, i.e., 0/ð1;0;0Þ, 1/ð0;1;0Þ and 2/

ð0;0;1Þ. For better performance in terms of both accuracy and speed, we utilize an inherent property that each target SNP is mostly
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related by its adjacent tag SNPs.We set the number of the adjacent tag SNPs as a pre-determined parameter d, and run experiments

on various choices of the parameter (d = 8k for 1%k%9). As a result, we check that d = 40 shows the best accuracy in terms of micro-

AUC. Since the running time of computing genotype score grows linear to d, the fastest result is obtained at d = 8. We refer the in-

termediate value d = 24 to the most balanced choice in terms of accuracy and speed.

The security of the utilized CKKS scheme relies on the hardness of solving the RLWE problem with ternary (signed binary) secret.

For the security estimation, we applied the LWE estimator (Albrecht et al., 2015), a sage module that computes the computational

costs of state-of-art (R)LWE attack algorithms. The script for the security estimation is attached as a figure in the ‘‘SNU team solution’’

section in the supplementary document.

Non-secure methods
We describe the versions and the details of how the non-secure methods were run. The benchmarks were performed on a Linux

workstation with 769 Gigabytes of main memory on an Intel Xeon Platinum 8168 CPU at 2.7 GHz with 96 cores. No other tools

were run in the course of benchmarks.

Beagle
We obtained the jar formatted Java executable file for Beagle version 5.1 from the Beagle web site. The population panel (1,500 in-

dividuals) and the testing panel data are converted into VCF file format as required by Beagle. We ran Beagle using the chromosome

22 maps provided from the web site. The number of threads is specified as 16 threads at the command line (option ‘nthreads=16’).

We set the ‘gp’ and ‘ap’ flags in the command line to explicitly ask Beagle to save genotype probabilities that are used for building the

sensitivity versus PPV curves. Beagle supplies the per genotype probabilities for each imputed variant. These probabilities were used

in plotting the curves.

IMPUTE2
IMPUTE2 is downloaded from the IMPUTE2 website. The haplotype, legend, genotype, and the population panels are converted into

specific formats that are required by IMPUTE2.We could not find a command line option to run IMPUTE2with multiple threads. To be

fair, we divided the sequenced portion of the chromosome 22 (from 16,000,000 to 51,000,000 base pairs) into 16 equally spaced

regions of length 2.333 megabases. Next, we ran 16 different IMPUTE2 instances in parallel, as described in the IMPUTE2 manual.

The output from the 16 runs is pooled to evaluate the imputation accuracy of IMPUTE2. IMPUTE2 provides per genotype probabil-

ities, which were used for plotting the precision-recall curves.

Minimac3 and Minimac4
Minimac3 and Minimac4 are downloaded from the University of Michigan web site. We next downloaded Eagle 2.4.1 phasing soft-

ware for phasing input genotypes. ‘‘Eagle+Minimac3’’ and ‘‘Eagle+Minimac4’’ were used in the Michigan Imputation Server’s pipe-

line that is served for the public use. The panels are converted into indexed VCF files as required by Eagle, Minimac3, and Minimac4.

We first used the Eagle protocol to phase the input genotypes. The phased genotypes are supplied to Minimac3 and Minimac4, and

final imputations are performed. Eagle, Minimac3, andMinimac4were runwith 16 threads using the command line options (‘–numTh-

reads=16’ and ‘–cpus 16’ options for Eagle andMinimac3, respectively). Minimac3 andMinimac4 reports an estimated dosage of the

alternate allele, which we converted to a score as in the above equation for UTMSR’s scoring.

Minimac4 algorithm requires a preprocessing of the reference haplotype with a parameter estimation step. We observed that the

parameter estimation step add a substantial amount of processing time and Minimac4 requires the parameter estimates to perform

imputation.

Data and code availability
d Source data statement. Accuracy and resource benchmarking related source data have been deposited at https://doi.org/10.

5281/zenodo.4947832. The 1000 Genomes project dataset are publicly available fromNCBI portal at NCBI:ftp://ftp-trace.ncbi.

nih.gov/1000genomes/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.

gz). The Illumino array platform metadata is available from https://support.illumina.com/downloads/human1m-duo_v3-

0_product_

files.html.

d Code statement. The original source code, documentation, and usage examples for the imputation models are deposited at

github: https://github.com/K-miran/secure-imputation and are also archived and deposited at https://doi.org/10.5281/

zenodo.4948000.

d Scripts statement. The source and scripts for generating the figures and associated instructions are archived and deposited

under https://doi.org/10.5281/zenodo.4947832 and are co-located with the figure-related datasets.

d Any additional information required to reproduce this work is available from the lead contact.
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