
Proceedings on Privacy Enhancing Technologies ; 2021 (2):323–347

David Froelicher*, Juan R. Troncoso-Pastoriza, Apostolos Pyrgelis, Sinem Sav, Joao Sa Sousa,
Jean-Philippe Bossuat, and Jean-Pierre Hubaux

Scalable Privacy-Preserving Distributed
Learning
Abstract: In this paper, we address the problem of
privacy-preserving distributed learning and the eval-
uation of machine-learning models by analyzing it in
the widespread MapReduce abstraction that we extend
with privacy constraints. We design spindle (Scalable
Privacy-preservINg Distributed LEarning), the first dis-
tributed and privacy-preserving system that covers the
complete ML workflow by enabling the execution of a
cooperative gradient-descent and the evaluation of the
obtained model and by preserving data and model confi-
dentiality in a passive-adversary model with up to N−1
colluding parties. spindle uses multiparty homomor-
phic encryption to execute parallel high-depth compu-
tations on encrypted data without significant overhead.
We instantiate spindle for the training and evaluation
of generalized linear models on distributed datasets and
show that it is able to accurately (on par with non-
secure centrally-trained models) and efficiently (due to
a multi-level parallelization of the computations) train
models that require a high number of iterations on
large input data with thousands of features, distributed
among hundreds of data providers. For instance, it
trains a logistic-regression model on a dataset of one
million samples with 32 features distributed among 160
data providers in less than three minutes.

Keywords: federated learning, multiparty homomor-
phic encryption, decentralized system, generalized lin-
ear models

DOI 10.2478/popets-2021-0030
Received 2020-08-31; revised 2020-12-15; accepted 2020-12-16.

*Corresponding Author: David Froelicher:
Laboratory for Data Security (LDS), EPFL, E-mail:
david.froelicher@epfl.ch
Juan R. Troncoso-Pastoriza, Apostolos Pyrgelis,
Sinem Sav, Joao Sa Sousa, Jean-Philippe Bossuat,
Jean-Pierre Hubaux: Laboratory for Data Security (LDS),
EPFL, E-mail: name.surname@epfl.ch

1 Introduction
The training of machine-learning (ML) models usually
requires large and diverse datasets [133]. In many do-
mains, such as medicine and finance, assembling suffi-
ciently large datasets has proven difficult [128] and of-
ten requires the sharing of data among multiple data-
providers. This is particularly true in medicine, where
patients’ data are spread among multiple entities: For
example, for rare diseases, one hospital might have only
a few patients, whereas a medical study requires hun-
dreds of them to produce significant results. Data shar-
ing among many entities, which can be located in multi-
ple countries, is hence required. However, when the data
are sensitive and/or personal, they are particularly dif-
ficult to share. Data sharing is highly restricted by legal
regulations, such as GDPR [43] in Europe. The financial
and reputational consequences of a data breach often
make the risk of data sharing higher than its potential
benefits. Hence, it is often impossible to obtain suffi-
cient data to train ML models that are key enablers in
medical research [90], financial analysis [115], and many
other domains.

To address this issue, privacy-preserving solutions
are gaining interest as they can be key-enablers for
ML with sensitive data. Many solutions have been pro-
posed for secure predictions that use pre-trained mod-
els [12, 17, 45, 61, 78, 104–106]. However, the secure
training of ML models, which is much more computa-
tionally demanding, has been less studied. Some cen-
tralized solutions [7, 15, 23, 29, 50, 60, 63, 66] that
rely on homomorphic encryption (HE) were proposed.
They have the advantage of being straightforward to
implement but require individual records to be trans-
ferred out of the control of their owners, which is of-
ten not possible, e.g., due to data protection legisla-
tion [62, 77]. Also, the data are moved to a central
repository, which can become a single point of failure.
Secure multiparty computation solutions (SMC) pro-
posed for this scenario [3, 28, 42, 44, 57, 88, 95], of-
ten assume that a limited number of computing par-
ties are honest-but-curious and non-colluding. These as-
sumptions might not hold when the data are sensitive

Scalable Privacy-Preserving Distributed Learning 324

and/or when the parties have competing interests. In
contrast, homomorphic encryption-based (HE) or hy-
brid (HE and SMC) solutions [41, 131] that assume a
malicious threat model (e.g., Anytrust model [123]) fo-
cus on limited ML operations (e.g., the training of reg-
ularized linear models with low number of features) and
are not quantum secure. Recent advances in quantum
computing [47, 56, 114, 127] have made this technology
a potential threat, in a not-so-far future, for existing
cryptographic solutions [89]. Google recently announced
that they have reached "quantum-supremacy" [49]. Even
though quantum computers are still far from being able
to break state-of-the-art cryptoschemes, we note that
certain data (e.g., genomics) remain sensitive over a long
period and will be at risk in the future.

Finally, federated learning, a non-cryptographic ap-
proach for privacy-preserving training of ML models,
has recently gained interest. The data remain under
the control of their owners and a server coordinates
the training by sending the model directly to the data
owners, which then update the model with their data.
The updated models from multiple participants are av-
eraged to obtain the global model [68, 82]. Recent works
have shown that sharing intermediate models with a co-
ordinating server, or among the participants, can lead
to various privacy attacks, e.g., extracting participants’
inputs [54, 122, 132] or membership inference [84, 92].
To address these problems, multiple works [72, 83, 111]
rely on a differentially private mechanism to obfuscate
the intermediate values. However, this obfuscation de-
creases the data and model utility, whereas the training
of accurate models requires high privacy budgets and
the achieved privacy level remains unclear [58].

Existing cryptographic distributed solutions are
practical with only a small number of parties and most
of the aforementioned solutions focus either on training
or on prediction. They neither consider the complete
ML workflow nor enable the training of a model that
remains secret and enables oblivious prediction on con-
fidential data. In many cases, the trained model is as
sensitive as the data on which it is trained, and the use
of the model after the training has to be tightly con-
trolled. ML is used in very competitive domains and a
balance has to be found between collaboration and com-
petition [90, 113]. For example, entities that collaborate
to train a ML model should equally benefit from the
resulting model.

In this paper, we address the problem of privacy-
preserving learning and prediction among multiple par-
ties, i.e., data providers (DPs), that do not trust each
other. To address this issue, we design a solution that

uses the MapReduce abstraction [31] that is often used
to define distributed ML tasks [27, 118]. MapReduce de-
fines parallel and distributed algorithms in a simple and
well-known abstraction: prepare (data preparation),
map (distributed computations executed independently
by multiple nodes or machines), combine (combination
of the map results, e.g., aggregation) and reduce (com-
putation on the combined results). We build on and ex-
tend this abstraction to determine and delimit which
information, e.g., map outputs, have to be protected to
design a decentralized privacy-preserving system for
ML training and prediction. The model is locally trained
by the DPs (map) and the results are iteratively com-
bined (combine) to update the global model (reduce).
We exploit the partitioned (distributed) data to enable
DPs to keep control of their respective data, and we
distribute the computation to provide an efficient so-
lution for the training of ML models on confidential
data. After the training, the model is kept secret from
all entities and is obliviously and collectively used to
provide predictions on confidential data that are known
only to the entity requesting the prediction. We remark
that differential-privacy-based federated-learning solu-
tions [2, 22, 34, 55, 59, 64, 72, 99, 111, 117] follow the
same model, i.e., they can be defined according to the
MapReduce abstraction. However, most solutions intro-
duce a trade-off between accuracy and privacy [58], and
do not provide data and model confidentiality simulta-
neously. On the contrary, our solution uses a different
paradigm in which, similarly to non-secure solutions,
the accuracy is traded off with the performance (e.g.,
number of iterations), but not with privacy.

We propose spindle (Scalable Privacy-preservINg
Distributed LEarning), a system that enables the
privacy-preserving, distributed (cooperative) execution
of the widespread stochastic mini-batch gradient-
descent (SGD) on data that are stored and controlled by
multiple DPs. spindle builds on a state-of-the-art mul-
tiparty, lattice-based, quantum-resistant cryptographic
scheme to ensure data and model confidentiality, in the
passive-adversary model in which all-but-one DPs can
be dishonest. spindle is meant to be a generic and
widely-applicable system that supports the SGD-based
training of many different ML models. This includes,
but is not limited to, support vector machines, graph-
ical models, generalized linear-models and neural net-
works [33, 48, 69, 116, 130]. For concreteness and com-
parison with existing works, we instantiate spindle for
the training of and prediction on generalized linear mod-
els (GLMs) [93], (e.g., linear, logistic and multinomial
logistic regressions). GLMs are easily interpretable, cap-

Scalable Privacy-Preserving Distributed Learning 325

ture complex non-linear relations (e.g., logistic regres-
sion), and are widely-used in many domains such as
finance, engineering, environmental studies and health-
care [76]. In a realistic scenario where a dataset of 11,500
samples and 90 features is distributed among 10 DPs,
spindle efficiently trains a logistic regression model in
less than 54 seconds, achieving an accuracy of 83.9%,
equivalent to a non-secure centralized solution. The dis-
tribution of the workload enables spindle to efficiently
cope with a large number of DPs (parties), as its execu-
tion time is practically independent of it. spindle han-
dles a large number of features, by optimizing the use of
the cryptosystem’s packing capabilities, and by exploit-
ing single-instruction multiple-data (SIMD) operations.
It is able to perform demanding training tasks, with high
number of iterations and thus high-depth computations,
by relying on the multiparty cryptoscheme’s ability to
collectively refresh a ciphertext with no significant over-
head. As shown by our evaluation, these properties en-
able spindle to support training on large and complex
data such as imaging or medical datasets. Moreover,
spindle scalability over multiple dimensions (features,
DPs, data) represents a notable improvement with re-
spect to state-of-the-art secure solutions [41, 131].
In this work, we make the following contributions:

– We analyze the problem of privacy-preserving dis-
tributed training and of the evaluation of ML models
by extending the widespread MapReduce abstraction
with privacy constraints. Following this abstraction,
we instantiate spindle, the first operational and ef-
ficient distributed system that enables the privacy-
preserving execution of a complete machine-learning
workflow through the use of a cooperative gradient
descent on a dataset distributed among many data
providers.

– We propose multiple optimizations that enable the
efficient use of a quantum-resistant multiparty (N-
party) cryptographic scheme by relying on parallel
computations, SIMD operations, efficient collective
operations and optimized polynomial approximations
of the models’ activation functions, e.g., sigmoid and
softmax.

– We propose a method for the parameterization of
spindle by capturing the relations among the secu-
rity and the learning parameters in a graphical model.

– We evaluate spindle against centralized and decen-
tralized secure solutions and demonstrate its scalabil-
ity and accuracy.

To the best of our knowledge, spindle is the first opera-
tional system that provides the aforementioned features
and security guarantees.

2 Related Work

Privacy-Preserving Training of Machine Learn-
ing Models. Some works have focused on securely out-
sourcing the training of linear ML models to the cloud,
typically by using homomorphic encryption (HE) tech-
niques [7, 15, 29, 50, 63, 66, 100]. For instance, Graepel
et al. [50] outsource the training of a linear classifier by
employing somewhat HE [38], whereas Aono et al. [7]
approximate logistic regression, and outsource its com-
putation to the cloud by using additive HE [97]. Jiang
et al. [60] present a framework for outsourcing logistic
regression training to public clouds by combining HE
with hardware-based security techniques (i.e., Software
Guard Extensions). In spindle, we consider a substan-
tially different setting where the sensitive data are dis-
tributed among multiple (untrusted) data providers.

Along the research direction of privacy-preserving
distributed learning, most works operate on the two-
server model, where data owners encrypt or secret-share
their data among two non-colluding servers that are
responsible for the computations. For instance, Niko-
laenko et al. [95] combine additive homomorphic en-
cryption (AHE) and Yao’s garbled circuits [125] to
enable ridge regression on data that are horizontally
partitioned among multiple data providers. Gascon et
al. [42] extend Nikolaenko et al. work [95] to the case
of vertically partitioned datasets and improve its com-
putation time by employing a novel conjugate gradient
descend (GD) method, whereas Giacomelli et al. [44]
further reduce computation and communication over-
heads by using only AHE. Akavia et al. [3] improve
the performance of Giacomelli et al. protocols [44] by
performing linear regression on packed encrypted data.
Mohassel and Zhang [88] develop techniques to han-
dle secure arithmetic operations on decimal numbers,
and employ stochastic GD, which, along with multi-
party-computation-friendly alternatives for non-linear
activation functions, supports the training of logistic
regression and neural network models. Schoppmann et
al. [108] propose data structures that exploit data spar-
sity to develop secure computation protocols for nearest
neighbors, naive Bayes, and logistic regression classifi-
cation. spindle differs from these approaches as it does

Scalable Privacy-Preserving Distributed Learning 326

not restrict to the two non-colluding server model, and
focuses instead on N-party systems, with N>2.

Other distributed and privacy-preserving ML ap-
proaches employ a three-server model and rely on secret-
sharing techniques to train linear regressions [13], logis-
tic regressions [26], and neural networks [87, 119]. How-
ever, such solutions are tailored to the three-party server
model and assume an honest majority among the com-
puting parties. An honest majority is also required in the
recent work of Rachuri and Suresh [103], who improve
on Mohassel and Rindal [87] performance by extending
its techniques to the four-party setting. Other works fo-
cus on the training of ML models among N-parties (N
> 4), with stronger security assumptions, i.e., each party
trusting itself. For instance, Corrigan-Gibbs and Boneh
[28] present Prio, which relies on secret-sharing to en-
able the training of linear models, and Zheng et al. [131]
propose Helen, a system that uses HE [97] and verifiable
secret sharing [30] to execute ADMM [19] (alternating
direction method of multipliers, a convex optimization
approach for distributed data), which supports regular-
ized linear models. Similarly, Froelicher et al. [41] em-
ploy HE [35], along with encoding techniques, to enable
the training of basic regression models and provide au-
ditability with the use of zero-knowledge proofs. spin-
dle enables better scalability in terms of the number of
model’s features, size of the dataset and number of data
providers, and it offers richer functionalities by relying
on the generic and widely-applicable SGD.

Another line of research considers the use of dif-
ferential privacy for training ML models. Early works
[2, 22] focus on a centralized setting where a trusted
party holds the data, trains the ML model, and per-
forms the noise addition. Differential privacy has also
been envisioned in distributed settings, where to col-
lectively train a model, multiple parties exchange or
send differentially private model parameters to a cen-
tral server [34, 55, 72, 111]. However, the training of
an accurate collective model requires very high privacy
budgets and, as such, it is unclear what privacy protec-
tion is achieved in practice [54, 58, 122]. To this end,
some works consider hybrid approaches where differen-
tial privacy is combined with HE [64, 99], or multi-party
computation techniques [59, 117]. We consider differen-
tial privacy as an orthogonal approach; these techniques
can be combined with our solution to protect the re-
sulting models and their predictions from inference at-
tacks [39, 112], see Section 8.1.
Privacy-Preserving Prediction on ML Models.
Another line of work is focused on privacy-preserving

ML prediction, where a party (e.g., a cloud provider)
holds an already trained ML model on which another
party (e.g., a client) wants to evaluate its private input.
In this setting, Bost et al. [17] use additive HE tech-
niques to evaluate naive Bayes and decision tree classi-
fiers, whereas Gilad-Bachrach et al. [45] employ fully ho-
momorphic encryption (FHE) [16] to perform prediction
on a small neural network. The computation overhead
of these approaches has been further optimized by using
multi-party computation (MPC) techniques [104, 106],
or by combining HE and MPC [61, 78, 102]. Riazi
et al. [105] evaluate deep neural networks by employ-
ing garbled circuits and oblivious transfer, in combina-
tion with binary neural networks. Boemer et al. [12]
propose nGraph-HE2, a compiler that enables service
providers to deploy their trained ML models in a
privacy-preserving manner. Their method uses HE, or
a hybrid scheme that combines HE with MPC, to com-
pile ML models that are trained with well-known frame-
works such as TensorFlow [1] and PyTorch [98]. The
scope of our work is broader than these approaches, as
spindle accounts not only for the private evaluation
of machine-learning models but also for their privacy-
preserving training in the distributed setting.

3 Secure Federated Training and
Evaluation

We first introduce the problem of privacy-preserving
distributed training and evaluation of machine-learning
(ML) models. Then, we present a high-level overview
and architecture of a solution that satisfies the security
requirements of the presented problem. In Section 4,
we present spindle, a system that enables the pri-
vacy preserving and distributed execution of a stochas-
tic gradient-descent. We instantiate our solution for the
training and evaluation of the widely-used Generalized
Linear Models [93]. In the rest of this paper, matrices
are denoted by upper-case-bold characters and vectors
by lowercase-bold characters; the i-th row of a matrix
X is depicted as X[i, ·], and its i-th column as X[·, i].
Similarly, the i-th element of a vector y is denoted by
y[i]. We provide a list of recurrent symbols in Table 6
(see Appendix G).

Scalable Privacy-Preserving Distributed Learning 327

3.1 Problem Statement

We consider a setting where a dataset (Xn×c,yn), with
Xn×c a matrix of n records and c features, and yn
a vector of n labels, is distributed among a set of
data providers, i.e., S = {DP1, . . . , DP|S|}. The dataset
is horizontally partitioned, i.e., each data provider
DPi holds a partition of ni samples (X(i),y(i)), with∑|S|
i=1 ni = n. A querier, which can also be a data

provider (DP), requests the training of a ML model on
the distributed dataset (Xn×c,yn) or the evaluation of
an already trained model on its input (X′, ·).

We assume that the DPs are willing to contribute
their respective data to train and to evaluate ML models
on the distributed dataset. To this end, DPs are all inter-
connected and organized in a topology that enables effi-
cient execution of the computations, e.g., in a tree struc-
ture as depicted in Figure 1. Even though the DPs wish
to collaborate for the execution of ML workflows, they
do not trust each other. As a result, they seek to protect
the confidentiality of their data (used for training and
evaluation) and of the collectively learned model. More
formally, we require that the following privacy proper-
ties hold in a passive-adversary model in which all-but-
one DPs can collude, i.e., the DPs follow the protocol,
but up to |S| − 1 DPs might share among them the in-
formation they observe during the execution, to extract
information about the other DPs’ inputs.
(a) Data Confidentiality: The training data of each
data provider DPi, i.e., (X(i),y(i)) and the querier’s
evaluation data (X′, ·) should remain only known to
their respective owners. To this end, data confidential-
ity is satisfied as long as the involved parties (DPs and
querier) do not obtain any information about other par-
ties’ inputs other than what can be deduced from the
output of the process of training or evaluating a model.
(b) Model Confidentiality: During the training pro-
cess, no data provider DPi should gain more informa-
tion about the model that is being trained than what it
can learn from its own input data (X(i),y(i)). During
prediction, the querier should not learn anything more
about the model than what it can infer from its input
data (X′, ·) and the corresponding predictions y′.

We remark here that input correctness and com-
putation correctness are not part of the problem re-
quirements, i.e., we assume that DPs input correct data
and do not perform wrong computations. We discuss
possible countermeasures against malicious DPs in Sec-
tion 8.1.

Fig. 1. spindle’s Model. Thick arrows represent a possible (effi-
cient) query-execution flow.

3.2 Solution Overview

To address the problem of privacy-preserving dis-
tributed learning, we leverage the MapReduce abstrac-
tion, which is often used to capture the parallel and
repetitive nature of distributed learning tasks [27, 118].
We complement this abstraction with a protection
mechanism P (·); P (x) denotes that value x has to be
protected to satisfy data and model confidentiality (Sec-
tion 3.1). We present the extended MapReduce ab-
straction in Protocol 1. In prepare, the data providers
(DPi ∈ S) pre-process their data (X(i),y(i)), they agree
on the learning parameters and on one data provider
that plays the role of DPR and is then responsible for
the execution of reduce. As explained later, DPR only
manipulates protected data and is subject to the same
security constraints as any other DP. We discuss the
choice of DPR and its availability in Section 8. Each
DPi then iteratively (g iterations) trains its local model
(P (W (i,j)) at iteration j) on its data in map. They
combine their local models in combine (through an
application-dependent function C(·)), and update the
global model P (W (·,j)

G) in reduce. To capture the com-
plete ML workflow, we extend the MapReduce archi-
tecture with a prediction phase in which predictions
P (y′) are computed from the querier’s protected evalu-
ation data P (X′) by using the (protected) global model
P (WG

(·,g)) obtained during the training.

Protocol 1 Extended MapReduce Abstraction.

training: S receives query from Querier and outputs P (W (·,g)
G)

1: Each DPi has (X(i), y(i))
2: DPs appoint DPR and agree on learning params. – prepare
3: Each DPi ∈ S initializes its local model W (i,0)

4: for j = 1, . . . , g do
5: Each DPi ∈ S computes: – map

P (W (i,j))← Map((X(i), y(i)), P (W (·,j−1)
G), P (W (i,j−1)))

6: Each DPi sends P (W (i,j)) to DPR – combine
7: DPR: P (W (·,j)) ← C(P (W (i,j))), ∀ DPi ∈ S

– reduce
8: DPR: P (WG

(·,j))←Red(P (WG
(·,j−1)), P (W (·,j)))

prediction: DPR receives P (X′) from Querier and uses
P (WG

(·,g)) to compute P (y′) that is sent back to the Querier

Scalable Privacy-Preserving Distributed Learning 328

4 SPINDLE Design
Following the extended MapReduce abstraction de-
scribed in Section 3.2, we design a system, named
spindle, that enables the privacy-preserving execu-
tion of the widely applicable cooperative gradient de-
scent [120, 121] – which is used to minimize many cost
functions in machine-learning [69, 116, 130]. We instan-
tiate this system for the training of and prediction on
Generalized Linear Models [93]. To implement the pro-
tection mechanism P (·), it builds on a multiparty fully
homomorphic encryption scheme. We introduce these
concepts in Section 4.1. Then, in Section 4.2, we describe
how spindle instantiates the phases of the extended
MapReduce abstraction and how we address the collec-
tive data-processing on the distributed dataset through
secure and interactive protocols. We demonstrate how
training is performed, notably by executing the gradient
descent operations under homomorphic encryption, and
how predictions are executed on encrypted models. We
present the detailed cryptographic operations in Sec-
tion 5 and analyze spindle’s security in Appendix C.

4.1 Background

Cooperative Gradient-Descent. We rely on a dis-
tributed version of the popular mini-batch stochastic
gradient-descent (SGD) [69, 116, 130]. In the standard
version of SGD, the goal is to minimize minw[F (w) :=
(1/n)

∑n
φ=1 f(w; X[φ, ·])], where f(·) is the loss func-

tion defined by the learning model, w ∈ Rc are the
model parameters, and X[φ, ·] is the φth data sam-
ple (row) of X. The model is then updated by m it-
erations w(l) = w(l−1) − α[ζ(w(l−1); B(l))], for l =
1, . . . , m, with α the learning rate, B(l) a randomly
sampled sub-matrix of X of size b × c, and ζ(w;B) =
BT (σ(Bw)− I(z)), where z is the vector of labels cor-
responding to the batch B. The activation function σ

and I(·) are both model-dependent, e.g., for a logistic
regression σ is the sigmoid and I(·) is the identity.

We rely on the cooperative SGD (CSGD) pro-
posed by Wang and Joshi [120, 121], due to its prop-
erties; in particular: (i) modularity, as it can be syn-
chronous or asynchronous, and can be combined with
classic gradient-descent convergence optimizations such
as Nesterov accelerated SGD [94]; (ii) applicability, as
it accommodates any ML model that can be trained
with SGD and enables the distribution of any SGD
based solution; (iii) it guarantees a bound on the error-

convergence depending on the distributed parameters;
e.g., the number of iterations and the update func-
tion for the global weights [18, 120, 121, 129]; and (iv)
it has been shown to work well even in the case of
non-independent-and-identically-distributed (non-i.i.d.)
data partitions [81, 120, 121]. The data providers (DPs),
each of which owns a part of the dataset, locally perform
multiple iterations of the SGD before aggregating their
model weights into the global model weights. The global
weights are included in subsequent local DP computa-
tions to avoid that they learn, or descend, in the wrong
direction. For simplicity, we present spindle with the
synchronous CSGD version, where the DPs perform lo-
cal model updates simultaneously. For each DPi, the
local update rule at global iteration j and local itera-
tion l is:

w(i,j,l)=w(i,j,l-1)−αζ(w(i,j,l-1);B(l))−αρ(w(i,j,l-1)−w(·,j-1)
G),

(1)
where w(·,j−1)

G are the global weights from the last
global update iteration j − 1, α is the learning rate and
ρ, the elastic rate, is the parameter that controls how
much the data providers can diverge from the global
model. The set of DPs S performs m local iterations
between each update of the global model that is up-
dated at global iteration j with a moving average by:

w
(·,j)
G = (1− |S|αρ)w(·,j−1)

G + αρ
∑|S|

i=0w
(i,j,m). (2)

Generalized Linear Models (GLMs). GLMs [93]
are a generalization of linear models where the lin-
ear predictor, i.e., the combination Xw of the feature
matrix X and weights vector w, is related to a vec-
tor of class labels y by an activation function σ such
that E(y) = σ−1(Xw), where E(y) is the mean of y.
In this work, we consider the widely-used linear (i.e.,
σ(Xw) = Xw), logistic (i.e., σ(Xw) = 1/(1 + e−Xw))
and multinomial (i.e., σ(Xwλ) = eXwλ/(

∑
j∈cl e

Xwj),
for λ ∈ cl) regression models. We remark that for multi-
nomial regression, the weights are represented as a ma-
trixWc×|cl|, where c is the number of features, cl is the
set of class labels and |cl| its cardinality. In the rest of
the paper, unless otherwise stated, we define the oper-
ations on a single vector of weights w and we note that
in the case of multinomial regression, they are repli-
cated on the |cl| vectors of weights, i.e., each column of
Wc×|cl|.
Multiparty Homomorphic Encryption. For the
protection mechanism of spindle, we rely on a mul-
tiparty (or distributed) fully-homomorphic encryption
scheme [91] in which the secret key is distributed among
the parties, while the corresponding collective public key
pk is known to all of them. Thus, each party can inde-

Scalable Privacy-Preserving Distributed Learning 329

pendently compute on ciphertexts encrypted under pk
but all parties have to collaborate to decrypt a cipher-
text. In spindle, this enables the data providers (DPs)
to train a collectively encrypted model, that cannot be
decrypted as long as one DP is honest and refuses to par-
ticipate in the decryption. As we show later, this multi-
party scheme also enables DPs to collectively switch the
encryption key of a ciphertext from pk to another pub-
lic key without decrypting. In spindle, a collectively
encrypted prediction result can thus be switched to the
querier’s public key, so that only the querier can decrypt
the result.

Mouchet et al. [91] propose a multiparty version of
the Brakerski Fan-Vercauteren (bfv) lattice-based ho-
momorphic cryptosystem [38] and introduce interactive
(distributed) protocols for key generation DKeyGen(·),
decryption DDec(·), and bootstrapping DBootstrap(·).
We use an adaptation of this multiparty scheme to the
Cheon-Kim-Kim-Song cryptosystem (ckks) [25] that
enables approximate arithmetic, and whose security is
based on the ring learning with errors (rlwe) prob-
lem [80]. ckks (See Appendix A) enables arithmetic
over CN/2; the plaintext and ciphertext spaces share the
same domain RQ = ZQ[X]/(XN + 1), with N a power
of 2. Both plaintexts and ciphertexts are represented by
polynomials of N coefficients (degree N − 1) in this do-
main. A plaintext/ciphertext encodes a vector of up to
N/2 values.
Parameters: The ckks parameters are denoted by
the tuple (N,∆, η,mc), where N is the ring dimen-
sion, ∆ is the plaintext scale, or precision, by which
any value is multiplied before being quantized and en-
crypted/encoded, η is the standard deviation of the
noise distribution, and mc represents a chain of moduli
{q0, . . . , qL} such that Πι∈{0,...,τ}qι = Qτ is the cipher-
text modulus at level τ , with QL = Q, the modulus of
fresh ciphertexts. Operations on a level-τ ciphertext 〈v〉
are performed modulo Qτ , with ∆ always lower than
the current Qτ . Ciphertexts at level τ are simply vec-
tors of polynomials in RQτ , that we represent as 〈v〉
when there is no ambiguity about their level, and use
{〈v〉, τ,∆} otherwise. After performing operations that
increase the noise and the plaintext scale, {〈v〉, τ,∆}
has to be rescaled (see the ReScale(·) procedure defined
in Appendix A) and the next operations are performed
moduloQτ−1. When reaching level 0, 〈v〉 has to be boot-
strapped. The security of the cryptosystem depends on
the choice of N , Q and η, which in this work are param-
eterized to achieve at least 128-bits of security.

(Distributed) Operations: A vector v of cleartext val-
ues can be encrypted with the public collective key
pk and can be decrypted with the collaboration of all
DPs (DDec(·) protocol, in which each DPi uses its se-
cret key ski). The DPs can also change a ciphertext
encryption from the public key pk to another public
key pk′ without decrypting the ciphertext, by relying
on the DKeySwitch(·) protocol. Each DP can indepen-
dently add, multiply, rotate (i.e., inner-rotation of v),
rescale Rescale(·) or relinearize Relin(·) a vector en-
crypted with pk. When two ciphertexts are multiplied
together, the result has to be relinearized Relin(·) to
preserve the ciphertext size. After multiple Rescale(·)
operations, 〈v〉 has to be refreshed by a collective pro-
tocol, i.e., DBootstrap(·), which returns a ciphertext at
level L. The dot product DM(·) of two encrypted vectors
of size a can be executed by a multiplication followed
by log2(a) inner-left rotations and additions. We list all
the operations used in spindle and their properties in
Appendix A.

4.2 SPINDLE Protocols

We first describe spindle’s operations for training a
Generalized Linear Model following Protocol 1. In this
case, the modelW is a vector of weights that we denote
by w, and map corresponds to multiple local iterations
of the gradient descent. Recall that in the case of multi-
nomial regression, all operations are repeated for each
label class λ ∈ cl.

4.2.1 TRAINING

PREPARE. The data providers (DPs) collectively
agree on the training parameters: the maximum num-
ber of global g and local m iterations, and the learn-
ing parameters lp = {α, ρ, b}, where α is the learn-
ing rate, ρ the elastic rate, and b the batch size. The
DPs also collectively initialize the cryptographic keys for
the distributed ckks scheme by executing DKeyGen(·)
(see Appendix A). Then, the DPs initialize their local
weights and pre-compute operations that involve only
their input data (αX(i)I(y(i)) and αX(i)T). We discuss
in Appendix F how the DPs can collaborate to stan-
dardize or normalize the distributed dataset (if needed)
and check that their respective inputs are consistent,
e.g., they have data distribution homogeneity.

Scalable Privacy-Preserving Distributed Learning 330
Protocol 2 map.
Each DPi outputs 〈w(i,j)〉 ← Map ((X(i), y(i)), 〈w(·,j−1)

G 〉,
〈w(i,j−1)〉)
1: 〈w(i,j,0)〉 = 〈w(i,j−1)〉
2: for l = 1, . . . ,m :
3: Select batch (B, z) of b rows in (X(i), y(i))
4: 〈u[k]〉 = DM(B[k, ·], 〈w(i,j,l−1)〉), for k = 1, . . . , b
5: 〈v[e]〉 = DM(αB[·, e]T , σ(〈u〉)), for e = 1, . . . , c
6: µ[e] =

∑b

k=1 αB[·, e]T I(z[k]), for e = 1, . . . , c
7: 〈w(i,j,l)〉 = 〈w(i,j,l−1)〉+µ-〈v〉

-αρ(〈w(i,j,l−1)〉-〈wG(·,j−1)〉)
8: 〈w(i,j)〉 = RR(〈w(i,j,m)〉)

MAP. As depicted in Protocol 2, the DPs execute
m iterations of the cooperative gradient-descent local
update (Section 4.1). The local weights of DPi (i.e.,
〈w(i,j,l−1)〉) are updated at a global iteration j and a
local iteration l by computing the gradient (Protocol 2,
lines 4, 5, and 6) that is then combined with the cur-
rent global weights 〈w(·,j−1)

G 〉 (Protocol 2, line 7) fol-
lowing Equation 1. These computations are performed
on batches of b samples and c features. To ensure that
the update of DPi’s local weights, i.e., the link between
the ciphertexts 〈w(i,j−1)〉 = 〈w(i,j,0)〉 and 〈w(i,j,m)〉,
does not leak information about the DP’s local data,
〈w(i,j,m)〉 is re-randomized RR(·) at the end of map, i.e.,
DPi adds to it a fresh encryption of 0. Note that in Pro-
tocol 2, line 5 the activation function σ(·) is computed
on the encrypted vector 〈u〉 (or a matrix 〈U〉 in the
case of multinomial). The exponential activation func-
tions for logistic (i.e., sigmoid) and multinomial (i.e.,
softmax) regressions have to be approximated to poly-
nomial functions to be evaluated on encrypted data by
using the homomorphic properties of ckks. We rely on a
least-square polynomial approximation (LSPA) for the
sigmoid, as it provides an optimal average mean-square
error for uniform inputs in a specific interval, which is
a reasonable assumption when the input distribution
is not known. For softmax, we rely on Chebyshev ap-
proximation (CA) to minimize the maximum approxi-
mation error and thus avoid that the function diverges
on specific inputs. The approximation intervals can be
empirically determined by using synthetic datasets with
distribution similar to the real ones, by computing the
minimum and maximum input values over all DPs and
features, or by relying on estimations based on the data
distribution [53]. Protocol 3 takes as input an encrypted
vector/matrix 〈u〉 or 〈U〉 and the type of the regression
t (i.e., linear, logistic or multinomial). If t is linear, the
protocol simply returns 〈u〉. Otherwise, if t is logistic,
it computes the activated vector 〈σ(u)〉 by using the
sigmoid’s LSPA (apSigmoid(·)). If t is multinomial, it
computes the activated matrix 〈σ(U)〉 using the softmax

Protocol 3 Activation Function σ(·).
Func. σ(〈u〉 or 〈U〉, t) returns the activated 〈σ(u)〉 or 〈σ(U)〉
1: if t is Linear then 〈σ(u)〉 = 〈u〉
2: else if t is Logistic then
3: 〈σ(u)〉 = apSigmoid(u)
4: else if t is Multinomial, input is a matrix 〈Uc×|cl|〉 then
5: 〈m〉 = apMax(〈U〉)
6: for λ ∈ cl:
7: 〈U ′[λ, ·]〉 = 〈U [λ, ·]〉 − 〈m〉
8: 〈σ(U [λ, ·])〉=M(apSoftN(〈U ′[λ, ·]〉), apSoftD(〈U ′[λ, ·]〉))

approximation that is computed by the multiplication
of two CAs, one for the nominator ex (apSoftN(·)) and
one for the denominator 1∑

exj
(apSoftD(·)), each com-

puted on different intervals. The polynomial approxima-
tion computation is detailed in Protocol 6 (Appendix
B). To avoid an explosion of the exponential values in
the softmax, a vector 〈m〉 that contains the approxi-
mated max (apMax(·)) value of each column of 〈U〉 is
subtracted from all input values, i.e., from each 〈U [λ, :]〉
with λ = 0, ..., |cl|. Similar to softmax, the approxima-
tion of the max function requires two CAs, and is de-
tailed in Appendix B.
COMBINE. The map outputs of each DPi, i.e.,
〈w(i,j)〉, are homomorphically combined ascending a
tree structure, such that each DPi aggregates its en-
crypted updated local weights with those of its children
and sends the result to its parent. In this case, the com-
bination function C(·) is the homomorphic addition op-
eration. At the end of this phase, the DP at the root of
the tree DPR obtains the encrypted combined weights
〈w(·,j)〉.
REDUCE. DPR updates the encrypted global weights
〈w(·,j)

G 〉, as shown in Protocol 4. More precisely, it
computes Equation 2 by using the encrypted sum of
the DPs’ updated local weights 〈w(·,j)〉 (obtained from
combine), the previous global weights 〈w(·,j−1)

G 〉, the
pre-defined elastic rate ρ and the learning rate α. After
g iterations of the map, combine, and reduce, DPR
obtains the encrypted global model 〈w(·,g)

G 〉 and broad-
casts it to the rest of the DPs.

Protocol 4 Reduce.
DPR computes 〈w(·,j)

G 〉 ← Red(〈w(·,j−1)
G 〉, 〈w(·,j)〉, ρ, α)

1: 〈w(·,j)
G 〉 = (1− αρ|S|)〈w(·,j−1)

G 〉+ αρ〈w(·,j)〉

4.2.2 PREDICTION

The querier’s input data (X′, ·) is encrypted with the
collective public key pk. Then, 〈X′〉pk is multiplied
(DM(·, ·) with the weights of the trained model 〈w(·,g)

G 〉

Scalable Privacy-Preserving Distributed Learning 331

and processed through the activation function σ(·) to
obtain the encrypted prediction values 〈y′〉 (one predic-
tion per row of X′). The prediction results encrypted
under pk are then collectively switched by the DPs to
the querier public key pk′ using DKeySwitch(·), so that
only the querier can decrypt 〈y′

pk′〉.

Protocol 5 prediction.
DPR gets 〈X′

n′×c〉 from Querier and computes 〈y′
n′ 〉 using

〈w(·,g)
G 〉

1: 〈y′[p]〉 = σ(DM(〈X′[p, ·]〉, 〈w(·,g)
G 〉)), for p = 0, ..., n′

2: 〈y′〉pk′ = DKeySwitch(〈y′〉, pk′, {ski})

5 System Operations
We describe how spindle relies on the properties of
the distributed version of ckks to efficiently address
the problem of privacy-preserving distributed learning.
We first describe how we optimize the protocols of Sec-
tion 4.2 by choosing when to execute cryptographic
operations such as rescaling and (distributed) boot-
strapping. Then, we discuss how to efficiently perform
the map protocol that involves a sequence of vector-
matrix-multiplications and the evaluation of the activa-
tion function, in the encrypted domain.

5.1 Cryptographic Operations

As explained in Section 4.1 (and Appendix A), cipher-
text multiplications incur the execution of other cryp-
tographic operations hence increase spindle’s computa-
tion overhead. This overhead can rapidly increase when
the same ciphertext is involved in sequential operations,
i.e., when the operations’ multiplicative depth is high.
As we will describe in Section 7, spindle relies on the
Lattigo [85] lattice-based cryptographic library, where a
ciphertext addition or multiplication requires a few ms,
whereas Rescale(·), Relin(·), and DBootstrap(·), are 1-
order, 2-orders, and 1.5-orders of magnitude slower than
the addition, respectively. These operations can be com-
putationally heavy, hence their execution in the proto-
cols should be optimized. Note that we avoid the use
of the centralized traditional bootstrapping, as it would
require a much more conservative parameterization for
the same security level, resulting in higher computa-
tional overheads (see Section 7).
Lazy Rescaling. To maintain the precision of the en-
crypted values and for efficiency we rescale a ciphertext
{〈v〉, τ,∆} only when ∆ is close to qτ . Hence, we per-

form a ReScale(·) only when this condition is met after
a series of consecutive operations.
Relinearization. Letting the ciphertext size increase
after every multiplication would add to the subsequent
operations an overhead that is higher than the relin-
earization. Hence, to maintain the ciphertext size and
degree constant, a Relin(·) operation is performed af-
ter each ciphertext-ciphertext multiplication. We here
note that a Relin(·) operation can be deferred if do-
ing so incurs in lower computational complexity (e.g.,
if additions performed after the ciphertext-ciphertext
multiplications reduce the number of ciphertexts to re-
linearize).
Bootstrapping. In the protocols of Section 4.2, we ob-
serve that the data providers’ local weights and the
model global weights (〈w〉 and 〈wG〉, resp.) are the
only persistent ciphertexts over multiple computations
and iterations. They are therefore the only ciphertexts
that need to be bootstrapped, and we consider three ap-
proaches for this. With Local bootstrap (LB), each
data provider (DP) bootstraps (calling a DBootstrap(·)
protocol) its local weights, every time they reach level τb
during the map local iterations and before the combine.
As a result, the global weights are always combined with
fresh encryptions of the local weights and only need
to be bootstrapped after multiple reduce. Indeed, re-
duce involves a multiplication by a constant hence a
Rescale(·). With Global bootstrap (GB), we use the
interdependency between the local and global weights,
and we bootstrap only the global weights and assign
them directly to the local weights. The bootstrapping is
performed on the global weights during reduce. Thus,
we modify training so that map operates on the (boot-
strapped) global weights, i.e., 〈w(i,j−1)〉 = 〈wG(·,j−1)〉,
for a DPi at global iteration j. By following this ap-
proach, the number of bootstrap operations is reduced,
with respect to the local approach, because it is per-
formed by only one DP and depends only on the num-
ber of global iterations. However, it modifies the learn-
ing method, and it offers less flexibility, as the number
of local iterations in map is constrained by the num-
ber of ciphertext multiplications required in each iter-
ation and by the available ciphertext levels. With Hy-
brid bootstrap (HB), both GB and LB approaches
are combined to reduce the total number of bootstrap-
ping operations. The global weights are bootstrapped at
each global iteration (GB) and the DPs can still perform
many local iterations by relying on the LB. In our exper-
iments (Section 7.2), we observed that the effect on the
trained model’s accuracy depends mainly on the data

Scalable Privacy-Preserving Distributed Learning 332

B =

Log2(b)

x

Dup.

RowP

=

RotL&Add1

Log2(c)

RotR&Add1

Log2(c)

xx

=
=

RowP

+

=

Log2(b)

+

=

x

=

RotLc

RotL2c

⟨u⟩=

⍺BT

=

=

RBA

B =

DA

⍺BT=

N1-1

c

b
c

b

σ

c

b

b

c
Diag.

N1=P2(max(c,b))/N2

N2= ⌊ P2(max �, �)	⌋

0 ≤ i ≤ N1, 0 ≤ j ≤ N2

i , j
0,0

1,0

0,1

1,1
rotRN1⋅j

i , j
0,0

1,0

0,1

1,1

x =
+

+

i , j
0,0

0,1

RotLN1⋅j

RotLN1⋅j

+

(A)

Repeat
(A)

CiphertextRotations

CiphertextRotationsN2-1

σ

(a)

(b)

(c)

(d)

(e)
(f)

(g)

(h)

(a’)
(b’) (c’)

=

⟨v⟩

⟨v⟩

RotLi
⟨w⟩ =

⟨u⟩

⟨w⟩ =

Fig. 2. Packing approaches for executing Protocol 2, lines 4 and 5. We assume that c · b < N/2 and show an example with c = b = 4.
Dash elements are plaintext values, everything else is encrypted. Dup duplicates and adds, rowP packs the rows in one ciphertext,
RotL(/R)&Addi rotates the encrypted vector by i, 2i, 4i, . . . to the left(/right) and at each step, aggregates the result with the pre-
vious ciphertext, RotL(/R)j rotates a vector left(/right) by j positions. P2(x) returns the next power of 2 larger than x.

and that, in most cases, enabling DPs to perform more
local iterations (LB and HB) between two global up-
dates yields better accuracy. Even though LB incurs at
least |S| more executions of the DBootstrap(·), the DPs
execute them in parallel and thus amortize the overhead
on spindle’s execution time. However, if the training of
a dataset requires frequent global updates, then GB (or
HB) achieves a better trade-off, see Section 7.2. Taking
into account these cryptographic transformations and
the strategy to optimize their use in spindle, we ex-
plain how to optimize the required number of ciphertext
operations.

5.2 MAP Vector-Matrix Multiplications

As described in Section 4.1, each ckks ciphertext en-
crypts (or packs) a vector of values, e.g., 8,192 elements
if the ring dimension is N = 214. This packing enables
us to simultaneously perform operations on all the vec-
tor values, by using a Single-Instruction Multiple Data
(SIMD) approach for parallelization. To execute com-
putations among values stored in different slots of the
same ciphertext, e.g., an inner sum, we rely on cipher-
text rotations that have a computation cost similar to a
relinearization (Relin(·)). Recall that for the execution
of stochastic gradient-descent, each local iteration in
map involves two sequential multiplications between en-
crypted vectors and cleartext matrices (Protocol 2, lines
4 and 5). As a result, packing is useful for reducing the
number of vector multiplications and rotations needed
to perform these operations. To this end, spindle in-
tegrates two packing approaches and automatically se-
lects the most appropriate approach at each DP during
the training. We now describe these two approaches and
how to choose between them, depending on the settings,
i.e., the learning parameters, the number of features,

and the DP computation capabilities. Figure 2 depicts
spindle’s packing approaches for a toy example of the
computation of 〈u〉 (Protocol 2, line 4) whose result is
activated (i.e., σ(〈u〉)) before used in the computation
of 〈v〉 (Protocol 2, line 5), for a setting with c = b = 4.
For clarity, we assume that a vector of c (number of fea-
tures) or b (batch size) elements can be encoded in one
ciphertext (or plaintext), i.e., max(c, b) ≤ N/2.
Row-Based Approach (RBA). This approach was
proposed by Kim et al. [63]. The input matrices (B
and αBT) are packed row-wise, and multiple rows are
packed in one plaintext ((a) in the upper part of Fig-
ure 2), i.e., the number of plaintexts required to en-
code the input matrix is d c·b·2N e. Each plaintext is then
multiplied with a ciphertext containing the replicated
weights’ vector (b), such that the number of replicas is
equal to the number of rows in B. To obtain the results
of the dot products between each weights’ vector and
row of B, a partial inner sum is performed by adding
the resulting ciphertext with rotated versions of itself
(c). The values in between the dot product results are
eliminated (i.e., masked) through a multiplication with
a binary vector (d), and the dot product results are du-
plicated in the ciphertext (e) such that it can be ac-
tivated (σ(·)) and used directly for the multiplication
with αXT (f). The result is then rotated and added to
itself (g) such that it can be masked (h) to obtain 〈v〉.
As shown in Figure 2, the total number of vector multi-
plications is d c·b·2N e·4, whereas the number of ciphertext
rotations is d c·b·2N e · 2 · (log(b) + log(c)). This approach
has a multiplicative depth of am + 4, where am denotes
the depth of the activation function σ(·).
Diagonal Approach (DA). This approach was pre-
sented by Halevi and Shoup [51] as an optimized ho-
momorphic vector-matrix-multiplication evaluation. It
optimizes the number of ciphertext rotations by trans-

Scalable Privacy-Preserving Distributed Learning 333

forming the input plaintext matrix B. In particular, B
is diagonalized, and each line is rotated ((a′) in lower
part of Figure 2) so that they can be independently
multiplied with the (rotated) weights’ vector (b′). The
resulting ciphertexts are aggregated and rotated to ob-
tain 〈u〉 (c′), and a similar approach is used to com-
pute 〈v〉 after the activation. As shown in Figure 2,
DA only executes 2 · ((N1 − 1) + (N2 − 1)) rotations on
the encrypted vector, with N1 = P 2(max(c, b))/N2 and
N2 = b

√
P 2(max(c, b))c, where P 2(x) returns the next

power of 2 larger than x. This approach involves N1 ·N2
plaintext-ciphertext multiplications on independent ci-
phertexts and does not require any masking, which re-
sults in a multiplicative depth of am+2. Therefore, this
approach consumes fewer levels than RBA.

In both approaches, the number of rotations and
multiplications depends on the batch size b and the
number of features c. DA almost always requires more
multiplications than RBA and uses more rotations af-
ter a certain c (e.g., if b = 8, the break-even happens at
c = 64). However, as DA is embarrassingly parallelizable
for both multiplications and rotations (with rotations
being the most time-consuming operations), the com-
putations can be amortized on multiple threads. Taking
this into account, spindle automatically chooses, based
on c, b, and the number of available threads, the best
approach at each DP. We analyze these trade-offs in
Section 7.

5.3 Optimized Activation Function

As described in Section 4.2, to enable their execution
under FHE, we approximate the sigmoid (apSigmoid(·))
and softmax (apMax(·), apSoftN(·), apSoftD(·)) activa-
tion functions with least-squares and Chebyshev poly-
nomial approximations (PA), respectively. We adapt the
baby-step giant-step algorithm introduced by Han and
Ki [52] to enable the minimum-complexity computation
of degree-d polynomials (multiplicative depth of dlog(d)e
for d ≤ 7, and with depth dlog(d) + 1e otherwise). Pro-
tocol 6 in Appendix B computes the (element-wise) ex-
ponentiation of the encrypted input vector before recur-
sively computing the polynomial approximation.

6 System Configuration
We discuss how to parameterize spindle by taking into
account the interdependencies between the input data,
and the learning and cryptographic parameters. We

Xnxc Δ
𝑁

𝜌
𝑄,𝜂 𝑚𝑐, 𝐿 𝑑

𝛼
𝑔, 𝑛

𝑏[𝑎! , 𝑔!]

Fig. 3. System parameters graph. Circles and dotted circles repre-
sent learning and cryptographic parameters, respectively.

then discuss two modular functionalities of spindle,
namely data outsourcing and model release.
Parameter Selection. spindle relies on the configu-
ration of (a) cryptographic parameters that determine
its security level, and (b) learning parameters that af-
fect the accuracy of the training and evaluation of the
models. Both are tightly linked, and we capture these
relations in a graph-based model, displayed in Figure 3,
where vertices and edges represent the parameters and
their interdependence, respectively. For simplicity, we
present a directed graph that depicts our empirical
method for choosing the parameters (see Appendix G,
Table 6 for notation symbols). We highlight that the
corresponding non-directed graph is more generic and
simply captures the main relations among the parame-
ters. We observe two main clusters: the cryptographic
parameters on the upper part of the graph (dotted cir-
cles), and the learning parameters (circles) on the lower
one. The input data and their intrinsic characteristics,
i.e., the number of features c or precision (bits of preci-
sion required to represent the data), are connected with
both clusters that are also interconnected through the
plaintext scale ∆. As such, there are various ways to
configure the overall system parameters.

In our case, we decide to first choose N (ciphertext
polynomial degree), such that at least c elements can be
packed in one ciphertext. Q (ciphertext modulus) and
η (fresh encryption noise) are then fixed to ensure a
sufficient level of security (e.g., 128-bits) following the
accepted parameterization from the homomorphic en-
cryption standard whitepaper [4]. The scale ∆ is con-
figured to provide enough precision for the input data
X, and mc (moduli chain) and L (number of levels)
are set accordingly. The intervals [ai, gi] used for the
approximations of the activation functions are defined
according to X. The approximation degrees d are then
set depending on these intervals and the available num-
ber of levels L. The remaining learning parameters (α,
ρ, b, g, m) are agreed upon by the data providers based
on their observation of their part of the dataset. Note
that the minimum values for the learning rate α and
elastic rate ρ are limited by the scale ∆, and if they are
too small the system might not have enough precision
to handle their multiplication with the input data.

Scalable Privacy-Preserving Distributed Learning 334

Data Outsourcing. spindle’s protocols (Section 4.2)
seamlessly work with data providers (DPs) that either
have their input data X in cleartext, or that obtain
data 〈X〉pk encrypted under the public collective key
from their respective owners. In the latter case, spin-
dle enables both secure data storage and computa-
tion outsourcing to always-available untrusted cloud
providers. It distributes the workload among multi-
ple data providers and is still able to rely on effi-
cient multiparty homomorphic-encryption operations,
e.g., DBootstrap(·). We note that operating on en-
crypted input data affects the complexity of map, as all
the multiplication operations (Protocol 2) would hap-
pen between ciphertexts, instead of between the cleart-
ext inputs and ciphertexts.
Model Release. By default, the trained model in spin-
dle is kept secret from any entity, enabling privacy-
preserving predictions on (private) evaluation-data in-
put by the querier and offering end-to-end model confi-
dentiality. If required by the application setting, spin-
dle can also reveal the trained model to the querier or
to a third party. This is collectively enabled by the DPs,
who perform a DKeySwitch(·).

7 System Evaluation
We first analyze the theoretical complexity of spindle
before moving to the empirical evaluation of its proto-
type and its comparison with existing solutions.

7.1 Theoretical Analysis

We refer to Table 4a (Appendices E.1 and E.2) for the
full complexity analysis of spindle’s protocols. We dis-
cuss here its main outcomes.
Communication Complexity. spindle’s communi-
cation complexity depends linearly on the number of
data providers |S|, iterations (g,m) and the ciphertext
size |ct|. In map, the only communication between the
DPs is due to the DBootstrap(·), which requires two
rounds of communication of one ciphertext (ct) between
the |S| DPs (i.e., 2 · (|S| − 1) · |ct|). In combine and re-
duce, the DPs exchange one ciphertext in respectively
one and two rounds. Finally, the prediction requires
the exchange of one ciphertext between a DP and the
querier and one DKeySwitch(·) operation, i.e., 2 cipher-
texts are sent per DP.
Computation Complexity. spindle’s most intensive
computational part is map; its complexity depends lin-

early on the number of DPs |S| and the number of iter-
ations, and logarithmically on the number of features c
and batch size b; all these parameters depend also on the
dataset size. As shown in Section 5.2, the DA packing
approach incurs a higher computation complexity but is
embarrassingly parallel and can be more time-efficient
than RBA depending on the available threads. The ac-
tivation function is the only operation that requires
ciphertext-ciphertext multiplications; its complexity de-
pends logarithmically on the approximation degree. We
empirically study the link between the approximation
degree and the training accuracy in Section 7.2. spin-
dle’s other steps and protocols only involve lightweight
operations, i.e., ciphertexts additions and multiplica-
tions with plaintext values.

7.2 Empirical Evaluation

We implemented spindle in Go [46]. Our implementa-
tion builds on top of Lattigo [85], an open-source Go
library for lattice-based cryptography, and Onet [96],
an open-source Go library for building decentralized
systems. The communication between data providers
(DPs) is done through TCP with secure channels (us-
ing TLS). We evaluate our prototype on an emulated
realistic network, with a bandwidth of 1 Gbps between
every two nodes, using Mininet [86]. We deploy spindle
on 5 Linux machines with Intel Xeon E5-2680 v3 CPUs
running at 2.5GHz with 24 threads on 12 cores and 256
Giga Bytes RAM, on which we evenly distribute the
DPs. We first provide spindle’s cryptographic opera-
tions micro-benchmarks before assessing spindle accu-
racy and performance by testing it on multiple publicly-
available datasets: CalCOFI [20] for linear regression,
BCW [10], PIMA [101] and ESR [37] for logistic re-
gression, and MNIST [70] for multinomial regression
(see Appendix E.3 for details on the datasets). We then
show spindle’s scalability by using randomly generated
(larger) datasets with up to 8,192 features and 4 million
data samples. Our evaluation shows spindle practical-
ity for large-dimensional datasets, making it suitable for
demanding learning tasks such as the training on imag-
ing or genomic datasets [11, 36, 71].

We employ two sets of security parameters (SP),
both ensuring 128-bit security: sp1: (N = 214, Q =
2438, η = 3.2, number of levels L = 9, scale ∆ = 234,
degree of the approximated activation function d = 5)
and sp2: (N = 213, Q = 2218, η = 3.2, L = 6, ∆ =
230, d = 3). sp2 is sufficient for linear regression and
for specific logistic regression models that accept a low-

Scalable Privacy-Preserving Distributed Learning 335

degree d approximation. To account for a wider-range
of solutions, we rely on sp1, unless otherwise stated. We
employ the local bootstrap approach for all our experi-
ments and for all datasets in baseline comparison except
for ESR and CalCOFI, for which we use global bootstrap,
as in most cases, doing multiple m local iterations be-
tween two global iterations yields a better accuracy. We
further study the choice of bootstrapping strategy later
in this section. Unless otherwise stated, we employ the
diagonal approach (DA) for packing; we compare it with
the row-based approach (RBA) in Figure 4a. In all our
experiments, we consider spindle’s total time to train
a regression model (including communication) without
prepare, which is executed once and mostly involves
light plaintext operations. E.g., the complete prepare
takes 16.5s for a dataset of 40,000 samples distributed
among 4 DPs. map accounts for up to 99.5% of spin-
dle’s execution time. As shown in Section 5, the DPs
perform most of the computations in map, which is the
only step with multiple local iterations, involving two
matrix-vector multiplications, which span most (up to
97%) of its execution time. The remaining time corre-
sponds to the computation of activation function and
collective bootstrapping.

Encrypt 0.02

Add 7 · 10−4

Mult 3 · 10−3

Rot 0.08

Relin 0.07

Rescale 0.01

(a) Local Crypto. Ops.

D. Op. 5 DPs 10 DPs 20 DPs 40 DPs

DKeyGen 2.14 3.13 4.20 5.65

DBootstrap 0.26 0.37 0.47 0.61

DKeySwitch 0.26 0.36 0.45 0.57

(b) Distributed Crypto Ops.

Table 1. Crypto. micro-benchmarks in seconds with sp1.

Micro-benchmarks. Table 1 shows the execution time
of each cryptographic operation. We observe that, as
mentioned before, spindle replaces the usually costly
bootstrapping operation by an efficient interactive pro-
tocol DBootstrap(·). One of the most recent works on
bootstrapping by Han and Ki [52] introduces a solution
that only achieves around 108 bits of security (lower
than the recommended 128 bits, due to recent attacks
[24, 126]) and executes a ckks bootstrapping in 26 sec-
onds with ciphertexts that can encrypt 213 values, cor-
responding to sp1, and about 20 seconds for sp2. This is
two orders of magnitude slower than our DBootstrap(·),
that achieves 128-bit security with execution times of
0.6 and 0.25 seconds for sp1 and sp2 (with 40 DPs).
Baseline Comparison. To evaluate spindle, we com-
pare its performance (execution time and accuracy)
against an ideal baseline, i.e., a non-privacy-preserving
centralized cleartext solution (CCS) where a DP ob-
tains the full dataset and trains the model on it. We

Dataset Vers. Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Table 2. Baseline Comparison with K-fold=5. Time to train (T.)
and to predict (P.) are in seconds. MSE and MAE are given for
the lin. reg. on CalCOFI. Accuracy and F1-score are given for all
the others.

consider the training time on the complete dataset and
use the training batch size b as the number of data
samples input for the prediction. Moreover, we com-
pare spindle with a distributed non-privacy-preserving
(DNP) solution (cleartext values and exact activation
functions), to show that our cryptographic approach
and activation approximations introduce minimal accu-
racy degradation. Finally, to demonstrate the benefit
of distributed learning approaches, we compare spin-
dle’s accuracy with a case where one DP independently
trains a model only on its local part of the distributed
dataset (Independent Training, IT). In Table 2, we show
spindle’s accuracy (Acc.) (resp., Mean Squared Error,
MSE) and F1-score (F1) (resp., Mean Average Error,
MAE) for logistic and multinomial (resp., linear) re-
gressions, achieved on the above datasets when they are
split among 10 DPs. We refer to Table 4b in Appendix E
for the learning parameters description. We observe that
spindle’s accuracy loss is very low, up to 0.8%, with re-
spect to a non-private centralized (CCS) solution where
the model is trained on the full dataset (using stan-
dard SGD) with a standard Python library [109]. For in-
stance, on ESR, CCS yields 84.2%, to 83.9% with spin-
dle. Moreover, this loss is mainly due to the data not
being centralized, as spindle consistently achieves al-
most the same accuracy as the decentralized non-private
(DNP) equivalent. spindle’s total training time (col-
umn T. in Table 2) is kept between 1 and 2 orders of
magnitude higher than DNP, as the costly operations
on encrypted data are partially amortized by SIMD op-
erations enabled by the used packing. For instance, the
training on the ESR dataset takes almost 3 seconds in
DNP and 53.27 seconds in spindle. We do not report
the time for the centralized training (CCS and IT), as
the settings are too different to be fairly comparable.

Scalable Privacy-Preserving Distributed Learning 336

Multinomial regression requires polynomial approxima-
tions of higher degree, i.e., between 15 and 19 (see Ap-
pendix 4b); its training on 70,000 records of 784 features
(MNIST) is executed in 558 seconds (column T. in Ta-
ble 2). This time can be reduced to 187.8 seconds by
performing 10 logistic regressions in parallel, one per
label class (one-vs-all), at the cost of a 1% loss in accu-
racy. In all cases, when a DP independently trains on its
part of the dataset (IT), i.e., with 1/10-th of the data,
the achieved accuracy is worse than the one achieved
on the entire distributed dataset. As for prediction (P.),
spindle’s prediction on 10 data samples of 90 features
(ESR dataset) requires only 0.35 seconds by packing the
input data and executing parallel computations. This
time can be further amortized if more predictions are
run in parallel.
Scalability. We study how spindle’s execution time
evolves when increasing the number of: features (c), data
providers (|S|), and dataset samples (n). By default, we
set |S| = 5, each DP having 5, 120 data records (syn-
thetically generated) with c = 32 features; we use a
batch size b = 256, with g = 5 global iterations, and
m = 20 local iterations in map. When comparing dif-
ferent approaches, we ensure that the number of times
that the dataset is fully processed is constant, and we
set the learning parameters accordingly. Figure 4a dis-
plays spindle’s execution time with an increasing num-
ber of features c and shows that it scales logarithmically,
in any of the used approaches. In this setting, we also
study the influence of the multi-threading, the differ-
ences between the two packing approaches (Section 5.2)
and the impact of having encrypted input data (Sec-
tion 6). When the computations are single-threaded,
the row-based approach (RBA) is more efficient than
the diagonal approach (DA) up to c = 128 features,
as RBA incurs fewer multiplications and rotations than
DA. In contrast, the diagonal approach (DA) execution
time in one or multiple threads is almost constant up
to c = 256 features (with a batch size b = 256), as its
complexity depends mainly on max(c, b) (Section 5.2).
However, the DA is embarrassingly parallelizable, and
it is always faster when the computations are executed
on 24 threads. As an example, on multiple threads and
for 256 features, DA yields an execution time of 165s
against 330s for RBA, and 365s when the input data
are encrypted and using RBA. For both approaches, the
parallelization is efficient up to c = 28, where the maxi-
mum thread-utilisation is reached. Afterwards, both ap-
proaches scale linearly. When the data providers have

encrypted input data (RBA-E), the execution time in-
creases by 7% with respect to RBA.

Figure 4b.i shows that when the number of DPs |S|
increases and each DP has a fixed amount of data, spin-
dle’s execution time is constant. This means that spin-
dle scales independently of |S|. In Figure 4b.ii, where
|S| increases but the total amount of data remains con-
stant, spindle’s execution time decreases linearly, as
the workload is efficiently distributed among the DPs.
In Figure 4b.iii, when |S| is constant and the size of
the DPs’ datasets increases, spindle’s execution time
increases linearly with the amount of data. If the batch
size can be increased when the data providers have more
records, then spindle’s execution time can be further
reduced. In summary, spindle scales independently of
the number of data providers, and linearly with the DPs’
dataset size. It is able to train models with a high num-
ber of features and thus remains practical for real-world
sized datasets. We note that spindle scales similarly to
a DNP solution in the three cases. For example, in the
case of Figure 4b.ii, DNP ranges from 0.69 seconds with
5 DPs to 0.42 seconds with 10 DPs, whereas spindle’s
execution time decreases from 150 to 78 seconds.
Bootstrapping & Activation Function Approx.
Degree. In Table 3, we observe that spindle accuracy
slightly improves with higher degree approximations of
the sigmoid for the activation function. Relying on LB
or HB, which require less global iterations and there-
fore less communication, and on low-degree approxima-
tions improves spindle execution time but, it can lower
the achieved accuracy. We remark that HB requires
less bootstrapping operations, as the global weights are
bootstrapped and assigned to the local weights. How-
ever, LB and HB execution times remain similar as in
LB, the DP perform the bootstrappings in parallel.

boot. \activ. 3 5 7

LB 0.837 ; 120 0.839 ; 125 0.839 ; 128

GB 0.843 ; 140 0.843 ; 143 0.844 ; 146

HB 0.844 ; 120 0.846 ; 124 0.846 ; 128

Table 3. spindle accuracy and timing (accuracy;exec. time in
sec) to train on ESR with different bootstrapping strategies and
degrees of the activation function.

Comparison with prior art. Here we briefly com-
pare, both qualitatively and quantitatively (when ap-
plicable), spindle against (a) centralized cryptographic
approaches (e.g., [21, 63, 66]), (b) cryptographic dis-
tributed solutions (e.g., [28, 41, 131]) and (c) federated
learning solutions (e.g., [34, 55, 72, 111]). See Appendix
E.4 for an extended analysis. (a) spindle consistently
outperforms centralized HE-based solutions (CES) as
spindle distributes the workload among multiple DPs

Scalable Privacy-Preserving Distributed Learning 337

(a) spindle’s performance with the nbr. of features (c). (b) spindle’s perf. with the nbr. of DPs (|S|) & records (n).

Fig. 4. spindle’s Scalability.

and replaces, as shown before, the costly centralized
bootstrapping operation by a lightweight interactive
protocol. (b) None of the existing HE-SMC-based dis-
tributed solutions [28, 41, 131] provides both data and
model confidentiality, or covers the entire ML workflow
(the trained model cannot be kept secret to perform
oblivious predictions) or enables the distributed execu-
tion of the gradient descent. Moreover, some solutions
([28, 41]) leak more than only the trained model and
rely on data encodings (or approximations) that lower
the obtained accuracy, whereas in spindle, we approx-
imate only the activation functions. Finally, all previ-
ous solutions scale quadratically in at least one dimen-
sion, i.e., number of features c, samples n, or DPs |S|,
whereas spindle’s execution time is almost independent
of |S|, scales logarithmically with the number of features
and linearly with the dataset size. Purely secret-sharing-
based solutions [13, 26] consider substantially different
settings as spindle, as they require the DPs to com-
municate their data outside their premises and require
an honest majority among a limited number of comput-
ing servers (typically, 2 to 4, depending on the setting).
Whereas spindle also works in this configuration, it is
not specifically optimized for 2-4 parties and its execu-
tion time would be in the same order of magnitude but
slower than secret-sharing-based solutions. This is due
to the computation overhead introduced by operations
on encrypted data. However, unlike secret-sharing-based
solutions, spindle efficiently scales to federated learning
settings where many (hundreds of) DPs keep their data
locally and can withstand up to N-1 out of N dishon-
est DPs. (c) In basic federated learning solutions, data
owners train and update the model on their local data
and a server aggregates the model updates to obtain
the global model [68, 82]. In this setting, the coordi-
nating server has to be fully trusted, as some informa-
tion can be inferred from the intermediate models, e.g.,
extracting participants’ inputs [54, 122, 132] or mem-
bership inference [84, 92]. spindle naturally thwarts
federated-learning and model-inversion attacks, as the

intermediate and final weights are never revealed. Fed-
erated learning approaches based on differential privacy
(diffP), e.g., [72, 83, 111], train the model while intro-
ducing noise to the intermediate values to mitigate ad-
versarial inferences. These approaches consider a differ-
ent paradigm by introducing a tradeoff between privacy
and accuracy, whereas in spindle security is absolute,
and the trade-off (accuracy vs execution time) is the
same as for non-secure solutions, e.g., less training iter-
ations can yield a less precise model. DiffP approaches
can significantly degrade the data utility, and might re-
quire a high privacy budget for which it remains unclear
what privacy protection is obtained in practice [58]. In
Section 8, we discuss how membership inference and re-
construction attacks from the prediction outputs can
also be mitigated in spindle by adding differentially-
private noise during the DKeySwitch(·).

8 Extensions
We describe here how spindle can be extended to with-
stand malicious adversaries and support more complex
ML models. We refer to Appendix F for extensions to
spindle that can be employed to support dynamic DPs,
optimize the model training and enable quality control.

8.1 Malicious Adversaries
Malicious DPs Interfering with Training. To limit
the extent to which a malicious DP could interfere with
its training, spindle can require from the DPs to pub-
lish transcripts of their computations [41] and to pro-
duce proofs of correct inputs. These features combined
would enable spindle to be fully auditable. Mechanisms
to avoid model poisoning attacks when the input data
are encrypted (and have to remain confidential) are an
open research problem. However, spindle can partially
mitigate this threat by constraining the DPs’ inputs and
requiring zero knowledge proofs of range [8, 9, 73, 124]
from the DPs. This would substantially limit the extent
to which a malicious DP could interfere with spindle’s
training. However, we note that this does not thwart

Scalable Privacy-Preserving Distributed Learning 338

all possible attacks, as, for example, poisoning attacks
would still be possible with in-range input data.
Malicious DPs Interfering with Prediction. As
for the training, computation correctness can be veri-
fied through computations’ transcripts published by the
DPs. To prevent a malicious DP from learning a victim
querier’s prediction outputs via a replay attack (i.e.,
reusing the querier’s encrypted data in a new query),
spindle can require queriers to provide signed proofs of
knowledge of the input data [79].
Malicious Querier Inferring Information from
Prediction’s Output. spindle naturally covers fed-
erated learning attacks [54, 84, 92] and model inversion
attacks [39], as the intermediate and final weights are
never revealed. Moreover, spindle can also mitigate in-
ference attacks, e.g., membership inference [112], by lim-
iting the number of prediction requests on the trained
model. This solution can be improved by adding noise
to the prediction output to achieve differential privacy
guarantees. In fact, a mechanism that ensures differen-
tial privacy can be used for all the outputs of spindle:
on the predictions y′ and on the trained model, if it is
released after training (Section 6). This would ensure
that a passive adversary (e.g., trying to infer informa-
tion from the system’s outputs) or an active adversary
controlling a subset of the DPs cannot learn informa-
tion, e.g., data or local model of honest parties, about a
subset of the DPs. To ensure differential privacy, spin-
dle should add some collectively generated noise [40, 65]
to the query result before performing DKeySwitch(·).
However, the choice of the privacy parameters is not
trivial and is an interesting direction for future work.
Furthermore, the use of differential privacy in dynamic
systems presents serious limitations; minimizing the re-
leased non-encrypted information (which also reduces
the noise magnitude required to meet a target differen-
tial privacy level) is much more effective and practical.
This is the approach taken in spindle, contrarily to fed-
erated learning systems, where the intermediate outputs
of each training iteration are always disclosed.

8.2 More Complex ML Models.
We first remark that the extended, privacy-preserving
MapReduce abstraction on which we rely to build spin-
dle can actually capture many of existing solutions for
secure distributed ML training [13, 14, 26, 28, 41, 44,
88, 95, 111, 131]. We also remark that, even though we
rely on the widely applicable distributed stochastic gra-
dient descent (SGD), other distributed approaches for
training ML models such as ADMM [19] could also be

expressed in the same abstraction. However, by relying
on SGD, we aim at designing a system that can then be
extended to other models, as SGD can be used to mini-
mize many cost functions [69, 116, 130]. In particular, it
can be extended to more complex models such as neu-
ral networks, which are usually trained using SGD [32].
spindle supports any activation function that can be
“practically” approximated by a polynomial; hence, the
challenges for its extension to more complex models re-
side in trading-off precision for efficiency when approx-
imating non-polynomial functions, and efficiently pack-
ing the data depending on the operations. This is partic-
ularly important for neural networks in which the com-
putations are sequentially performed through multiple
layers. Thus, each SGD iteration would involve higher
multiplicative-depth circuits and their evaluation under
encryption.

9 Conclusion
By extending the MapReduce abstraction, we have pro-
posed a generic solution to the problem of privacy-
preserving distributed ML model training and predic-
tion. Our abstraction enables us to optimize the applica-
tion of protection primitives from multiparty homomor-
phic encryption in a MapReduce workflow. We proposed
spindle, a privacy-preserving system that enables the
execution of a distributed stochastic gradient descent
and we have instantiated our quantum-resistant solution
for the training and oblivious prediction on generalized
linear models. We have shown that spindle achieves ac-
curacy comparable to non-secure centralized solutions,
and it scales independently of the number of DPs and
linearly or better with the size of the DPs’ local datasets
and the number of features. This makes it particularly
suitable for difficult and demanding learning tasks that
have to be performed on sensitive data that cannot be
shared. This is the case in many domains and partic-
ularly in medicine, where complex sensitive datasets
partitioned across medical institutions need to be reg-
ularly analyzed, e.g., Genome Wide Association Stud-
ies. spindle achieves better performance than existing
centralized and distributed solutions by leveraging the
data providers concurrent computation on their local
data, and using a multiparty encryption scheme that re-
places costly homomorphic operations (e.g., bootstrap-
ping) by efficient collective protocols. To the best of our
knowledge, spindle is the first highly scalable system
enabling the distributed execution of the gradient de-
scent across hundreds of parties and large datasets in a
privacy-preserving, post-quantum, and efficient way.

Scalable Privacy-Preserving Distributed Learning 339

Acknowledgment
We would like to thank all of those who reviewed the
manuscript, in particular: Henry Corrigan-Gibbs, the
members of the EPFL Laboratory for Data Security
and the anonymous reviewers. We also thank Yupeng
Zhang for shepherding the paper. This work was par-
tially supported by the grant #2017-201 of the Strategic
Focal Area “Personalized Health and Related Technolo-
gies (PHRT)” of the ETH Domain.

References
[1] M. Abadi et al. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] M. Abadi et al. Deep learning with differential privacy. In
ACM CCS, 2016.

[3] A. Akavia, H. Shaul, M. Weiss, and Z. Yakhini. Linear-
Regression on Packed Encrypted Data in the Two-Server
Model. In ACM WAHC, 2019.

[4] M. Albrecht et al. Homomorphic Encryption Security Stan-
dard. Technical report, HomomorphicEncryption.org, 2018.

[5] M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. J. of Mathematical Cryp-
tology, 2015.

[6] S. V. Algesheimer J., Camenisch J. Efficient computation
modulo a shared secret with application to the generation
of shared safe-prime products. In CRYPTO, 2002.

[7] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang. Scal-
able and secure logistic regression via homomorphic encryp-
tion. In ACM CODASPY, 2016.

[8] C. Baum, I. Damgård, S. Oechsner, and C. Peikert. Ef-
ficient commitments and zero-knowledge protocols from
ring-sis with applications to lattice-based threshold cryp-
tosystems. IACR Cryptol. ePrint Arch., 2016.

[9] C. Baum and A. Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to
lattice-based cryptography. In PKC, 2020.

[10] Breast Cancer Wisconsin (Original). https://archive.ics.
uci.edu/ml/datasets/breast+cancer+wisconsin+(original),
(14.02.2020).

[11] A. L. Beam and I. S. Kohane. Big data and machine learn-
ing in health care. Jama, 2018.

[12] F. Boemer, A. Costache, R. Cammarota, and C. Wierzyn-
ski. nGraph-HE2: A High-Throughput Framework for Neu-
ral Network Inference on Encrypted Data. In ACM WAHC,
2019.

[13] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk. Rmind: a
tool for cryptographically secure statistical analysis. IEEE
TDSC, 2016.

[14] K. Bonawitz et al. Towards federated learning at scale:
System design. In SysML, 2019.

[15] C. Bonte and F. Vercauteren. Privacy-preserving logistic
regression training. BMC medical genomics, 2018.

[16] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved
security for a ring-based fully homomorphic encryption
scheme. In IMACC, 2013.

[17] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. In NDSS, 2015.

[18] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization
methods for large-scale machine learning. Siam Review,
2018.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine learning, 2011.

[20] CalCOFI, over 60 years of oceanographic data. https:
//www.kaggle.com/sohier/calcofi, (05.03.2020).

[21] S. Carpov, N. Gama, M. Georgieva, and J. R. Troncoso-
Pastoriza. Privacy-preserving semi-parallel logistic regres-
sion training with fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2019.

[22] K. Chaudhuri and C. Monteleoni. Privacy-preserving logis-
tic regression. In NIPS, 2009.

[23] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali,
K. Laine, and K. Lauter. Logistic regression over encrypted
data from fully homomorphic encryption. BMC medical
genomics, 2018.

[24] J. H. Cheon, M. Hhan, S. Hong, and Y. Son. A hybrid of
dual and meet-in-the-middle attack on sparse and ternary
secret LWE. IEEE Access, 2019.

[25] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomor-
phic encryption for arithmetic of approximate numbers. In
ASIACRYPT, 2017.

[26] H. Cho, D. Wu, and B. Berger. Secure genome-wide as-
sociation analysis using multiparty computation. Nature
Biotech., 2018.

[27] C.-T. Chu et al. Map-reduce for machine learning on multi-
core. In NIPS, 2007.

[28] H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust,
and Computation of Aggregate Statistics. In NSDI, 2017.

[29] J. L. Crawford, C. Gentry, S. Halevi, D. Platt, and
V. Shoup. Doing real work with FHE: The case of logis-
tic regression. In ACM WAHC, 2018.

[30] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryp-
tion. In CRYPTO, 2012.

[31] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
2008.

[32] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradi-
ent descent finds global minima of deep neural networks.
CoRR, abs/1811.03804, 2018.

[33] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient
descent provably optimizes over-parameterized neural net-
works. arXiv preprint arXiv:1810.02054, 2018.

[34] W. Du, A. Li, and Q. Li. Privacy-Preserving Multiparty
Learning For Logistic Regression. In SecureComm, 2018.

[35] T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Trans-IT, 1985.

[36] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline.
Machine learning for medical imaging. Radiographics,
2017.

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://www.kaggle.com/sohier/calcofi
https://www.kaggle.com/sohier/calcofi

Scalable Privacy-Preserving Distributed Learning 340

[37] Epileptic Seizure Recognition Dataset. https://archive.
ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition,
(14.02.2020).

[38] J. Fan and F. Vercauteren. Somewhat practical fully ho-
momorphic encryption. IACR Cryptology ePrint Archive,
2012.

[39] M. Fredrikson, S. Jha, and T. Ristenpart. Model inver-
sion attacks that exploit confidence information and basic
countermeasures. In ACM CCS, 2015.

[40] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro,
Z. Huang, C. V. Mouchet, B. Ford, and J.-P. Hubaux.
Unlynx: A decentralized system for privacy-conscious data
sharing. PETS, 2017.

[41] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and
J. Hubaux. Drynx: Decentralized, secure, verifiable system
for statistical queries and machine learning on distributed
datasets. IEEE TIFS, 2020.

[42] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Do-
erner, S. Zahur, and D. Evans. Privacy-preserving dis-
tributed linear regression on high-dimensional data. PETS,
2017.

[43] The EU General Data Protection Regulation. https://gdpr-
info.eu/, (15.12.2020).

[44] I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon.
Privacy-preserving ridge regression with only linearly-
homomorphic encryption. In ACNS, 2018.

[45] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing. Cryptonets: Applying neu-
ral networks to encrypted data with high throughput and
accuracy. In ICML, 2016.

[46] Go Programming Language. https://golang.org,
(10.11.2019).

[47] L. Gomes. Quantum computing: Both here and not here.
IEEE Spectrum, 2018.

[48] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[49] Google CEO Sundar Pichai on achieving quantum
supremacy. https://tinyurl.com/y5rnowlc, (07.11.2019).

[50] T. Graepel, K. Lauter, and M. Naehrig. ML confidential:
Machine learning on encrypted data. In ICISC, 2012.

[51] S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO,
2014.

[52] K. Han and D. Ki. Better bootstrapping for approximate
homomorphic encryption. In CT-RSA, 2020.

[53] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright.
Privacy-preserving machine learning as a service. PETS,
2018.

[54] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models
under the GAN: information leakage from collaborative
deep learning. In ACM CCS, 2017.

[55] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong. DP-
ADMM: ADMM-based distributed learning with differential
privacy. IEEE TIFS, 2019.

[56] Quantum Computing is “no longer science fiction,” says
IBM. https://tinyurl.com/y4zvlsll, (10.02.2020).

[57] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and
G. Bejerano. Deriving genomic diagnoses without revealing
patient genomes. Science, 2017.

[58] B. Jayaraman and D. Evans. Evaluating differentially pri-
vate machine learning in practice. In USENIX Security,

2019.
[59] B. Jayaraman, L. Wang, D. Evans, and Q. Gu. Distributed

learning without distress: Privacy-preserving empirical risk
minimization. In NIPS, 2018.

[60] Y. Jiang et al. SecureLR: Secure logistic regression model
via a hybrid cryptographic protocol. IEEE TCB, 2019.

[61] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
GAZELLE: A low latency framework for secure neural net-
work inference. In USENIX Security, 2018.

[62] Why we shouldn’t disregard the nda. tinyurl.com/
y4hdr42d, , (05.03.2020).

[63] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Lo-
gistic regression model training based on the approximate
homomorphic encryption. BMC genomics, 2018.

[64] M. Kim, J. Lee, L. Ohno-Machado, and X. Jiang. Secure
and differentially private logistic regression for horizontally
distributed data. IEEE TIFS, 2019.

[65] M. Kim, J. Lee, L. Ohno-Machado, and X. Jiang. Secure
and differentially private logistic regression for horizontally
distributed data. IEEE TIFS, 2020.

[66] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure
logistic regression based on homomorphic encryption: De-
sign and evaluation. JMIR medical informatics, 2018.

[67] A. Koloskova, S. U. Stich, and M. Jaggi. Decentralized
stochastic optimization and gossip algorithms with com-
pressed communication. CoRR, abs/1902.00340, 2019.

[68] J. Konečný, H. McMahan, D. Ramage, and P. Richtárik.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

[69] A. Kumar, J. Naughton, and J. M. Patel. Learning general-
ized linear models over normalized data. In ACM SIGMOD,
2015.

[70] Y. LeCun and C. Cortes. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/ , 2010.

[71] M. K. Leung, A. Delong, B. Alipanahi, and B. J. Frey.
Machine learning in genomic medicine: a review of compu-
tational problems and data sets. Proceedings of the IEEE,
2015.

[72] W. Li et al. Privacy-preserving federated brain tumour
segmentation. In MLMI, 2019.

[73] B. Libert, S. Ling, K. Nguyen, and H. Wang. Lattice-
based zero-knowledge arguments for integer relations. In
CRYPTO, 2018.

[74] Y. Lindell. How to simulate it–a tutorial on the simula-
tion proof technique. In Tutorials on the Foundations of
Cryptography. 2017.

[75] R. Lindner and C. Peikert. Better key sizes (and attacks)
for LWE-based encryption. In CT-RSA, 2011.

[76] J. K. Lindsey. Applying generalized linear models. Springer
Science & Business Media, 2000.

[77] Why NDAs often don’t work when expected to do so and
what to do about it. https://tinyurl.com/y64qlzs9, ,
(05.03.2020).

[78] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural
network predictions via minionn transformations. In ACM
CCS, 2017.

[79] V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In
ACM CCS, 2020.

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://gdpr-info.eu/
https://gdpr-info.eu/
https://golang.org
http://www.deeplearningbook.org
https://tinyurl.com/y5rnowlc
https://tinyurl.com/y4zvlsll
tinyurl.com/y4hdr42d
tinyurl.com/y4hdr42d
http://yann.lecun.com/exdb/mnist/
https://tinyurl.com/y64qlzs9

Scalable Privacy-Preserving Distributed Learning 341

[80] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lat-
tices and learning with errors over rings. In EUROCRYPT,
2010.

[81] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al.
Communication-efficient learning of deep networks from
decentralized data. arXiv preprint arXiv:1602.05629, 2016.

[82] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas.
Federated learning of deep networks using model averaging.
CoRR, abs/1602.05629, 2016.

[83] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang.
Learning differentially private recurrent language models. In
ICLR, 2018.

[84] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Ex-
ploiting unintended feature leakage in collaborative learn-
ing. In IEEE S&P, 2019.

[85] Lattigo: A library for lattice-based homomorphic encryption
in go. https://github.com/ldsec/lattigo, (14.02.2019).

[86] Mininet. http://mininet.org, (13.12.2019).
[87] P. Mohassel and P. Rindal. ABY 3: a mixed protocol

framework for machine learning. In ACM CCS, 2018.
[88] P. Mohassel and Y. Zhang. SecureML: A system for scal-

able privacy-preserving machine learning. In IEEE S&P,
2017.

[89] M. Mosca. Cybersecurity in an era with quantum comput-
ers: Will we be ready? IEEE S&P, 2018.

[90] M. Mostert, A. Bredenoord, M. Biesaart, and J. Delden.
Big data in medical research and EU data protection law:
challenges to the consent or anonymise approach. Euro-
pean Journal of Human Genetics, 2016.

[91] C. Mouchet, J. R. Troncoso-pastoriza, J.-P. Bossuat, and
J. P. Hubaux. Multiparty homomorphic encryption: From
theory to practice. In Tech. Report https://eprint.iacr.org/
2020/304 , 2019.

[92] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive
privacy analysis of deep learning: Passive and active white-
box inference attacks against centralized and federated
learning. In IEEE S&P, 2019.

[93] J. A. Nelder and R. W. M. Wedderburn. Generalized linear
models. Journal of the Royal Statistical Society, 1972.

[94] Y. Nesterov. Smooth minimization of non-smooth func-
tions. Mathematical programming, 2005.

[95] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regression
on hundreds of millions of records. In IEEE S&P, 2013.

[96] Cothority network library. https://github.com/dedis/onet,
(10.11.2020).

[97] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, 1999.

[98] A. Paszke et al. Automatic differentiation in PyTorch.
2017.

[99] M. Pathak, S. Rane, and B. Raj. Multiparty differential
privacy via aggregation of locally trained classifiers. In
NIPS, 2010.

[100] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai.
Privacy-preserving deep learning via additively homomor-
phic encryption. IEEE TIFS, 2018.

[101] Pima Indians Diabetes Dataset. https://tinyurl.com/
y8o3x8me, (14.04.2018).

[102] M. Pratyush, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa. Delphi: A cryptographic inference service for

neural networks. In USENIX Security, 2020.
[103] R. Rachuri and A. Suresh. Trident: Efficient 4PC frame-

work for privacy preserving machine learning. In NDSS,
2020.

[104] M. S. Riazi et al. Chameleon: A hybrid secure computation
framework for machine learning applications. In ASIACCS,
2018.

[105] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter,
and F. Koushanfar. XONN: XNOR-based oblivious deep
neural network inference. In USENIX Security, 2019.

[106] B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepse-
cure: Scalable provably-secure deep learning. In ACM DAC,
2018.

[107] B. Schoenmakers and P. Tuyls. Efficient computation
modulo a shared secret with application to the generation
of shared safe-prime products. In EUROCRYPT, 2006.

[108] P. Schoppmann, A. Gascon, M. Raykova, and B. Pinkas.
Make some room for the zeros: Data sparsity in secure
distributed machine learning. In ACM CCS, 2019.

[109] Scikit-learn, Machine Learning in Python. https://scikit-
learn.org/stable/, (29.02.2020).

[110] A. Shamir. How to share a secret. Communications of the
ACM, 1979.

[111] R. Shokri and V. Shmatikov. Privacy-preserving deep learn-
ing. In ACM CCS, 2015.

[112] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Mem-
bership inference attacks against machine learning models.
In IEEE S&P, 2017.

[113] I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Ma-
honey, R. Katz, A. D. Joseph, M. Jordan, J. M. Hellerstein,
J. E. Gonzalez, et al. A berkeley view of systems challenges
for ai. arXiv preprint arXiv:1712.05855, 2017.

[114] B. Terhal. Quantum supremacy, here we come. Nature
Physics, 2018.

[115] R. Toshniwal, K. Dastidar, and A. Nath. Big data security
issues and challenges. International Journal of Innovative
Research in Advanced Engineering, 2015.

[116] P. Toulis, E. Airoldi, and J. Rennie. Statistical analysis of
stochastic gradient methods for generalized linear models.
In ICML, 2014.

[117] S. Truex et al. A hybrid approach to privacy-preserving
federated learning. In ACM AISec, 2019.

[118] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg,
T. Verbelen, and J. S. Rellermeyer. A survey on distributed
machine learning. arXiv preprint arXiv:1912.09789, 2019.

[119] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party
secure computation for neural network training. PETS,
2019.

[120] J. Wang and G. Joshi. Cooperative SGD: A unified frame-
work for the design and analysis of communication-efficient
SGD algorithms. CoRR, abs/1808.07576, 2018.

[121] J. Wang and G. Joshi. Cooperative SGD: A unified frame-
work for the design and analysis of communication-efficient
sgd algorithms. In ICML CodML Workshop, 2019.

[122] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and
H. Qi. Beyond inferring class representatives: User-level pri-
vacy leakage from federated learning. In IEEE INFOCOM,
2019.

[123] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-
son. Scalable anonymous group communication in the

https://github.com/ldsec/lattigo
http://mininet.org
https://eprint.iacr.org/2020/304
https://eprint.iacr.org/2020/304
https://github.com/dedis/onet
https://tinyurl.com/y8o3x8me
https://tinyurl.com/y8o3x8me
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

Scalable Privacy-Preserving Distributed Learning 342

anytrust model. Technical report, Naval Research Lab
Washington DC, 2012.

[124] R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and
W. Whyte. Efficient lattice-based zero-knowledge argu-
ments with standard soundness: construction and applica-
tions. In CRYPTO, 2019.

[125] A. C.-C. Yao. How to generate and exchange secrets. In
IEEE SFCS, 1986.

[126] Yongha Son and Jung Hee Cheon. Revisiting the hybrid
attack on sparse and ternary secret LWE. Technical Report
https://eprint.iacr.org/2019/1019,, 2019.

[127] A. Zalcman et al. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 2019.

[128] D. Zhang. Big data security and privacy protection. In
ICMCS, 2018.

[129] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learn-
ing with elastic averaging sgd. In NIPS, 2015.

[130] T. Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In ICML,
2004.

[131] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica. He-
len: Maliciously Secure Coopetitive Learning for Linear
Models. In IEEE S&P, 2019.

[132] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients.
In NIPS. 2019.

[133] X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan. Do
we need more training data? Int. J. Comput. Vision, 2016.

A Multiparty Homomorphic
Encryption (MHE)

We describe here the cryptographic operations and dis-
tributed protocols that are used in spindle.
Operations: In Scheme A.1, we introduce ckks opera-
tions. v is a vector of cleartext values, sk and pk are the
secret and public keys, and evk is an evaluation key.

Encrypt: 〈v〉pk = {{〈v〉, τ,∆}, L,∆}pk = Enc(pk, v)
Decrypt: v = Dec(sk, 〈v〉pk)

Add: {〈v1〉 + 〈v2〉,min(τ, τ ′),max(∆,∆′)} =
{〈v1〉, τ,∆} + {〈v2〉, τ ′,∆′}

Mult: {〈v3〉,min(τ, τ ′),∆∆′} = M({〈v1〉, τ,∆} ,
{〈v2〉, τ ′,∆′})

Rot: {〈v′〉, τ,∆} = RotL/R({〈v〉, τ,∆}, r, evk)
Rescale: {〈v〉, τ − 1,∆′} = ReScale({〈v〉, τ,∆})
Relin: {〈v〉, τ,∆} = Relin({〈v〉, τ,∆}, evk)

Bootstrap: {〈v〉, τ,∆} = Bootstrap({〈v〉, 0,∆}, evk)

Scheme A.1. CKKS operations.

Distributed Protocols: In Scheme A.2, we define
four protocols using the distributed version of ckks.
These protocols require the participation of all DPs,
i.e., each DPi contributes its respective secret key ski.
DKeyGen(·) generates the collective public key pk and

evaluation keys evks by combining the protocols defined
by Mouchet et al. [91]. These keys can then be used inde-
pendently (without interaction) by a DP on a ciphertext
〈v〉pk. The distribution of the scheme enables an efficient
distributed bootstrapping DBootstrap(〈v〉, τb,∆, {ski})
to collective refresh 〈v〉 to its initial level L. The min-
imum level τb at which the bootstrapping has to be
performed depends on the security parameters. The
DKeySwitch(·) enables the DPs to change a ciphertext
encryption from the public key pk to another public key
pk′, without decrypting the ciphertext.

Distrib. Key Gen: pk, evks = DKeyGen({ski})
Distrib. Bootstrap: {〈v〉, L,∆} = DBootstrap(〈v〉, τb,∆,

{ski})
Distrib. Key Switch: 〈v〉pk′ = DKeySwitch(〈v〉pk, pk′,

{ski})
Distrib. Decrypt: v = DDec(〈v〉, {ski})

Scheme A.2. Distributed CKKS operations.

A distributed decryption operation DDec(·) is a spe-
cial case of the DKeySwitch(·) where there is no pk′, i.e.,
pk′ is 0.

B Activation Functions
We describe how we evaluate a polynomial approxima-
tion and how we approximate the maximum function.

Protocol 6 Encrypted Poly. Approx. Evaluation AF(·).
Func. AF(〈u〉, d, r) outputs 〈a〉 the evaluated poly. approx. of
〈u〉
1: Choose the smallest ω such that 2ω > d and define k =
bω/2c

2: Compute {ui} = 〈u1〉, 〈u2〉, . . . , 〈u2k-1〉, 〈u2k 〉, 〈u2k+1 〉, . . . ,
〈u2ω-1 〉 inductively and call paRecu(r, d, {ui})

3: Function paRecu(r, d, {ui}):
4: Choose the smallest ω such that 2ω > d

5: Find polynomials q(〈u〉) and R(〈u〉) with 〈a〉 =
〈u2ω−1 〉q(〈u〉) +R(〈u〉) such that
〈a〉 =

∑
i=1,2,..,dr[i]〈ui〉

6: If d(q), d(R) ≤ 2 :
Evaluate q(〈u〉) = paRecu(r, d = d(q), {ui})
and R(〈u〉) = paRecu(r, d = d(R), {ui})

7: Else Return 〈a〉

Polynomial Approximation Protocol 6 inductively
computes the (element-wise) exponentiation of the en-
crypted input vector 〈u〉: 〈u1〉, 〈u2〉, . . . , 〈u2k−1〉, 〈u2k〉,
〈u2k+1〉, . . . , 〈u2ω−1〉 (Protocol 6, line 2), where ω

is the smallest value satisfying 2ω > d(p(〈u〉)) and
k = bω/2c. Then, it recursively evaluates p(〈u〉) =∑
i=1,2,3...,d ri〈u

i〉 = 〈u2ω−1〉q(〈u〉) + R(〈u〉) (Proto-

https://eprint.iacr.org/2019/1019

Scalable Privacy-Preserving Distributed Learning 343

col 6, line 3). Note that p(·), q(·), and R(·) are func-
tions of 〈u〉 and of the approximation coefficients r, q(·)
is the quotient of the division of the actual activation
function p(·) by 〈u2ω−1〉, and R(·) is the remainder of
the division. d(x) is a function that outputs the degree
of x.
Approximation of the maximum function Protocol
(Protocol 7) computes the approximation of the maxi-
mum function. It takes an encrypted matrix 〈U|cl|×c〉,
the approximations intervals [ai, gi] and degrees d, and
computes an encrypted vector 〈m〉 that contains a close
approximation of the max of each column of 〈U〉.

Protocol 7 Approximation of the max function
apMax(·).
〈m〉 ← apMax(〈U〉, [ai, gi],d)
1: 〈u′〉 =

∑|cl|
λ=0〈U [λ, ·]〉

2: for λ = 1, . . . , |cl|: 〈U [λ, ·]〉 = (〈U [λ, ·]〉 − 〈u′[λ, ·]〉)
3: r ← GetAFCoefficients((1/h′)e(x/h), [a1, g1],d[1]), where
h, h′ are predefined constants

4: for λ = 1, . . . , |cl|: 〈U ′′[λ, ·]〉 = AF(〈U [λ, ·]〉,d[1], r)
5: 〈o〉 =

∑|cl|
λ=0〈U

′′[λ, ·]〉
6: r′ ← GetAFCoefficients({1/x}, [a2, g2],d[2])
7: 〈o〉 = AF(〈o〉,d[2], r′)
8: for λ = 1, . . . , |cl|: 〈U [λ, ·]〉 = M(〈U [λ, ·]〉, 〈U ′′[λ, ·]〉)

9: 〈m〉 =
∑|cl|

λ=0(〈U [λ, ·]〉, 〈o〉)

C Security Analysis
We demonstrate that spindle achieves the data and
model confidentiality requirements defined in Sec-
tion 3.1 by relying on the real/ideal simulation
paradigm [74] and showing that a computationally-
bounded adversary that controls up to (|S| − 1)-out-of-
|S| DPs cannot distinguish a real world experiment, in
which the adversary is given actual data (sent by honest
DP(s)), and an ideal world experiment, in which the ad-
versary is given random data generated by a simulator.

The semantic security of the CKKS scheme is based
on the hardness of the decisional RLWE problem [25, 75,
80]. The achieved practical bit-security against state-
of-the-art attacks can be computed using Albrecht’s
LWE-Estimator [4, 5]. Mouchet et al. [91] prove that
their distributed protocols, i.e., Collective Encryption-
Key Generation, Collective Relinearization-Key Gen-
eration (DKeyGen(·)) and Collective Key Switching
(DKeySwitch(·) and DDec(·)) are secure under the sim-
ulator paradigm. They show that the distribution of the

cryptoscheme preserves its security in the passive ad-
versary model with all-but-one dishonest DPs, as long
as the decisional-rlwe problem is hard. Their proofs,
which are constructed using the bfv scheme, generalize
to our adaptation of their protocols to ckks, as they
preserve the same computational assumptions, and the
security of ckks is based on the same hard problem as
bfv. The security of DBootstrap(·) is based on Lemma 1
which we state and prove in Appendix D.

Proposition 1. Assume that spindle uses CKKS en-
cryptions with parameters (N,∆, η,mc) ensuring a post-
quantum security level λ. Given a passive adversary cor-
rupting at most |S| − 1 parties, spindle achieves data
and model confidentiality for training and prediction.

Sketch of the Proof. We consider a real-world simu-
lator S that simulates the view of a computationally-
bounded adversary corrupting |S| − 1 parties, i.e., it
has access to the inputs and outputs of |S| − 1 parties.
In prepare and map, the data providers (DPs) locally
compute on their data and only exchange encrypted
information with each other to perform DKeyGen(·)
and DBootstrap(·). In combine, the DPs’ map out-
puts, encrypted under the public collective key, are ag-
gregated. These outputs are the encrypted results of
multiple local iterations in which elements derived from
each DPi’s local private data (X(i),y(i)) are combined
with its encrypted local model 〈w(i,·)〉 and the cur-
rent encrypted global model 〈wG〉. This result is re-
randomized (i.e., added to a fresh encryption of 0) to
ensure that the outputs of successive map (i.e., the in-
puts to combine) do not leak any information about
the DPs’ data. In reduce, the global model is updated
by combining encrypted data, and a DBootstrap(·) is
executed. All the information exchanged by the DPs is
encrypted and the DPs rely on the aforementioned CPA-
secure-proven protocols. We show in Appendix D that
DBootstrap(·) is also simulatable. In prediction, only
encrypted information is exchanged and the security-
proven DKeyswitch(·) protocol is used. We consider two
cases: (a) the adversary controls |S| − 1 DPs and (b) it
controls the querier and |S|− 2 DPs. In (a), the encryp-
tion of the querier’s input data (with the DPs common
public key pk) can be simulated by S and spindle en-
sures Data Confidentiality of the querier. In (b) the con-
fidentiality of the adversary-controlled-querier’s data is
trivial. The simulator has access to the prediction result
and can produce all the intermediate (indistinguishable)
encryptions that the adversary sees. Hence, S can sim-
ulate all the values communicated during the train-

Scalable Privacy-Preserving Distributed Learning 344

ing and prediction by generating random ciphertexts
using the parameters (N,∆, η,mc), such that the real
outputs cannot be distinguished from the ideal ones.
The sequential composition of all cryptographic func-
tions remains simulatable by S, as different random
values are used in each step, and the exchanged cipher-
texts are re-randomized, i.e., there is no dependency be-
tween the random values that an adversary can leverage
on. Also, the adversary cannot decrypt collectively en-
crypted data unless all DPs collude, which would contra-
dict the considered threat model. Following this, spin-
dle ensures the data and model confidentiality of the
honest party/ies.

Finally, we note that by design, spindle thwarts
active attacks on federated learning [54, 84, 92, 132] and
model inversion attacks [39], as intermediate and final
model weights are never revealed during training.

D Security of DBootstrap(·)

The original distributed bootstrapping protocol for
BFV [38] is presented by Mouchet et al. [91]. In this
protocol, the data providers produce an additive shar-
ing of the encrypted ciphertext by masking their share
in the decryption, before collectively encrypting their
share to collectively produce a new (fresh) encryption of
the same value. We adapted this protocol to the ckks
scheme [25]. The protocol steps remain the same but
the underlying computational assumptions are differ-
ent. In fact, in ckks the shares created by the data
providers are not unconditionally hiding, but statisti-
cally or computationally hiding due to the incomplete
support of the used masks. The proof for the protocol’s
ckks version (DBootstrap(·)) follows from the proof pro-
vided by Mouchet et al. in the passive-adversary model
of the BFV bootstrapping protocol with the additional
assumption that Lemma 1 is true. This lemma guar-
antees the statistical indistinguishablity of the shares
in C. The RLWE problem is hard if the adversary is
computationally-bounded, whereas Lemma 1 relies on
a statistical argument. However, both share the same
security bound given the same security parameter and
DBootstrap(·) provides the same computational security
as Mouchet et al. [91] original protocol.

Lemma 1. Given the distribution P0 = (a+b) and P1 =
c with 0 ≤ a < 2δ and 0 ≤ b, c < 2λ+δ and b, c uniform,
then the distributions P0 and P1 are λ-indistinguishable;
i.e., a probabilistic polynomial adversary A cannot dis-

tinguish between both with probability greater than 2−λ:
|Pr[A → 1|P = P1]− Pr[A → 1|P = P0]| ≤ 2−λ.

Proof: We refer to Algesheimer et. al [6], Section 3.2
and Schoenmakers and Tuyls [107], Appendix A, for the
proof of the statistical λ-indistinguishability.

We recall that an encoded message msg of N/2
complex numbers with the CKKS scheme is an integer
polynomial of Z[X]/(XN + 1). Given that ||msg|| < 2δ,
and a second polynomial M of N integer coefficients
with each coefficient uniformly sampled and bounded by
2λ+δ − 1 for a security parameter λ, Lemma 1 suggests
that Pr[||msg(i) + M (i)|| ≥ 2λ+δ] ≤ 2−λ, for 0 ≤ i < N

and where i denotes the ith coefficient of the polynomial.
That is, the probability of a coefficient of msg + M to
be distinguished from a uniformly sampled integer in
[0, 2λ+δ) is bounded by 2−λ. In Mouchet et al. protocol,
each party samples its polynomial maskM with uniform
coefficients in [0, 2λ+δ).

The parties, however, should have an estimate of
the magnitude of msg to derive δ, which can be derived
from the plaintext scale, integer precision and previous
homomorphic operations. The masks Mi are added to
the ciphertext of RQ` during the switch to the secret-
shared domain. To avoid a modular reduction of the
masks in RQ` and ensure a correct re-encryption in RQL ,
the modulus Q` should be large enough for the additions
of N masks.

E Evaluation
We first provide the complete complexity analysis of
spindle. We describe in more details the datasets used
to assess spindle’s training accuracy and show in Table
4b an extended version of Table 2 including the learning
and approximation parameters.

E.1 Theoretical Analysis

In Table 4a, we provide the complete complexity anal-
ysis of spindle. |ct| represents the maximum size of a
ciphertext, i.e., the size of a fresh ciphertext at level L, E
and D stand for encryption and decryption workloads.
The DA packing approach incurs a higher computa-
tion complexity (with notably more plaintext-ciphertext
multiplications and rescaling (M), and rotations (R))
but, as shown in Section 7.2, it is embarrassingly paral-
lel, i.e., operations can be amortized by a factor N1 ·N2

Scalable Privacy-Preserving Distributed Learning 345

Comm. (tot) Comput. (per DPi)

MAP
(RBA)

B̃M
gm(4M + 2(log2(b) + log2(c))

R + σ)#ct+ B̃M

MAP
(DA)

B̃M
(2(N1N2M + (N1 +N2 − 2)

R) + σ)gm+ B̃M

COMBINE g(|S| − 1)|ct| 3A

REDUCE 2g(|S| − 1)|ct| + B̃R M + B̃R

PRED 2(|ct| + (|S| − 1)|ct|) M ′ + σ +D

DBoot.

B̃R = 2|ct|(|S| − 1)f(g),

B̃M = 2|ct||S|(|S| − 1)f(g,m)

if LB: B̃R = 0, if GB: B̃M = 0,
if HB: f(g) → f(g,m)

B̃R = (D + E)f(g))

B̃M = |S|(D + E)f(g,m)

if LB: B̃R = 0, if GB: B̃M = 0,
if HB: f(g) → f(g,m)

σ (log2(d) + 1)(M +M ′ + A)

(a) Theoretical Analysis. The number of HB always depends on
both g and m.

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Dataset Vers. SP, α, ρ,b g,m {[ai,gi],di} Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 1300
−, 10−1, 10−2, 1300
2, 10−1, 10−2, 1300

−
50, 1
50, 1

−
−
−

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

−, 10−2, −, 50
−, 10−2, 10−2, 50
2, 10−2, 10−2, 50

−
1, 30
1, 30

−
−
[±7], 3

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

−, 10−1, −, 20
−, 10−1, 10−1, 20
2, 10−1, 10−1, 20

−
1, 3
1, 3

−
−
[±1], 3

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

−, 6−3, −, 10
−, 6−3, 10−1, 10
2, 6−3, 10−1, 10

−
92, 1
92, 1

−
−
[±15], 5

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
SM:[−30, 4], 15/[1, 40], 19
M:[±15], 15/[1, 40], 15

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

−, 10−4, −, 1024
−, 10−4, 10−1, 1024
1,10−4, 10−1, 1024

−
3, 6
3, 6

−
−
[±15], 15

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

(b) Baseline Comparison with K-fold=5. Time to train (T.) and predict (P.) is in sec-
onds.

Table 4. spindle’s Evaluation.

(defined in Section 5.2) depending on the available
threads.

E.2 Communication

With the security parameters sp1, the size of a cipher-
text is 2.6MB and each DP receives and sends one ci-
phertext per global iteration. One ciphertext is also ex-
changed for each DBootstrap(·) (e.g., every two global
iterations).

E.3 Evaluation Datasets

For linear regression, we use the CalCOFI dataset (with
n = 812, 174 records and c = 2 features) [20]. It contains
oceanographic data (e.g., salinity) that can be used to
predict the water temperature. For logistic regression,
we use three different datasets: (a) the Breast Cancer
Wisconsin dataset (BCW, n = 699, c = 9) [10] contains
patients’ data that is employed to predict the presence
of a breast cancer, (b) the PIMA dataset (n = 768, c =
8) [101] contains medical observations collected from an
Indian community that can be used to predict the pres-
ence of diabetes, and (c) the Epileptic Seizure Recogni-
tion dataset (ESR, n = 11, 500, c = 179) [37] contains
patients’ data that can be used to predict a seizure. For
multinomial regression, we test spindle on the MNIST
dataset (n = 70, 000, c = 784) [70], where the goal is to
identify single-digits out of grey-scale images. We rely
on these datasets to compare spindle with various base-
lines.

E.4 Comparison with Prior Art

In Table 5, we perform a qualitative and quantitative
comparison of spindle with existing works. We con-
sider a generic privacy-preserving centralized encrypted
solution (CES), two distributed solutions, Drynx [41]
and Prio [28], which respectively rely on additive HE
and secret sharing, and Helen [131], a solution that
employs a different distributed approach, the Alternat-
ing Direction Method of Multipliers (ADMM) proposed
by Boyd et al. [19], to train regularized linear models.
CES represents a centralized solution, similar to exist-
ing works [21, 63, 66], in which one DP outsources its
encrypted data to a server that trains and evaluates a
model. For a fair comparison, we estimate the execu-
tion time (without communication) of a generic central-
ized (outsourced) solution (CES) relying on the non-
multiparty ckks scheme with security parameters that
enable packing of the same number of values in one ci-
phertext. We use as a reference one of the most recent
works on bootstrapping by Han and Dohyeong [52].

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Confident.
Non-lin.
Mod.

Scal. w.
|S|, c, ni

Acc. w.r.t
central.

|S|, c, ni Lin. Log. Multi.

CES data+model !

-
lin.
lin.

≈ 25.6k, 212, - 12k 14k -

Drynx
Prio
[41,28]

partially
for data

!

lin.
quadra.
indep.

< 25.6k, 212, 5 inf inf -

Helen
[112]

data "

quadra.
quadra.
indep.

≈
400k, 100, 4
400k, 10, 10
4M, 90, 4

9k
1.7k
6.5k

- -

Spindle data+model !

indep.
log.
log.

≈
25.6k, 212, 5
400k, 100, 4
400k, 10, 10
4M, 90, 4

480
528
513
5.8k

658
−
−
−

33.6k
−
−
−lin.

Table 5. Comparison with existing solutions. |S|, c are the num-
ber of DPs and features, ni the size of each DPi local dataset.
Timings for lin., log., multi. regressions training are in seconds.

Scalable Privacy-Preserving Distributed Learning 346

In Helen, the DPs perform the ADMM optimiza-
tion locally under a quantum-vulnerable additive HE
cryptoscheme, and combine their results under secret-
sharing. ADMM is less widespread than SGD, it is pri-
marily designed for linear models and does not pro-
vide the same stability and convergence guarantees than
the cooperative gradient-descent [18, 120, 121, 129], for
which convergence can be derived from SGD. Since He-
len’s implementation is not available, we aim at provid-
ing an intuition on how it quantitatively compares with
spindle. To this end, we used results reported in He-
len [131] and performed similar experiments in spindle
((2),(3),(4) in Table 5). We highlight here that the ex-
periment environment is different, and these results pro-
vide only an idea of how these systems compare. For a
fair comparison, we excluded the proof generation time
in Helen and we notice that as spindle, Helen reported
similar accuracy results as a non-secure centralized solu-
tion. We observe that spindle scales better than Helen
when increasing |S|, as its execution time is almost the
same in ((2) and (3)), and it also scales better with the
number of features (almost 10x better in (4)).

F Modular Extensions
We discuss here a set of extensions that can be (option-
ally) integrated and combined in spindle depending on
the application.
Threshold-encryption Scheme. To account for unre-
sponsive DPs, spindle can use a threshold-encryption
scheme, where the DPs secret-share [110] their secret
keys, thus enabling a subset of the DPs to perform the
cryptographic interactive protocols (DBootstrap(·) or
DKeySwitch(·)).
Dynamic Roles. The role of DPR played by one DP
has no security implications and only incurs small com-
putation overhead for one DP. This role can be dynami-
cally assigned (e.g., round robin) at each global iteration
or whenever the DP playing DPR becomes unavailable.
Asynchronous Learning & Performance Opti-
mizations.We experimentally observed that an uneven
distribution of the data across DPs does not affect the
training accuracy. However, and as expected, in order
to obtain similar accuracy as a centrally trained model,
the labels of the DPs’ local datasets should be similarly
distributed. For this, spindle can integrate optimiza-
tions of the stochastic gradient descent (SGD) that can
be expressed as a polynomial; in particular, SGD asyn-

chronous variants that account for imbalances in DPs’
response times or data distribution, or for sparse net-
works adaptations (e.g., Koloskova et al. [67]).

To avoid over- or under-fitting, which often happens
when the number of training iterations is predefined,
spindle can integrate a collective stop-test protocol.
This protocol enables the DPs to collectively decrypt
the absolute difference between the (global) weights of
two subsequent (global) iterations, or a statistic derived
from these values. The decrypted value is compared to
a chosen threshold to stop the training.
Data Preparation & Quality Control. As men-
tioned before, the training on a distributed dataset can
be optimized according to how the data are distributed
among the DPs. This information can also serve for data
standardization and quality control, and its leakage can
be mitigated by relying on differential privacy or on
HE-based interactive protocols [41]. spindle’s prepare
phase can be extended to include these solutions and
it is up to the DPs to choose the configuration that
achieves the required balance between privacy and per-
formance.

Scalable Privacy-Preserving Distributed Learning 347

G Notations

Symbol Description

DPi ith Data provider

S, |S| Set of DPs and its cardinality

Xn×c, yn Training dataset with c features,
n samples, and label vector

(X(i),y(i)) DPi’s part of the dataset

(X′, ·) Querier’s evaluation data

y′ Prediction’s output

cl, |cl| Set of class labels and its cardinality

X[φ, ·],X[·, φ] φth line and column of X

y[φ] element of vector y

B ∈ X Random mini-batch of b rows

W
(·,j)
G Global model at iteration j

W (i,j,l) DPi’s local model at global iter. j
and local iter. l

W (i,j) DPi’s local model at global iter. j

wG,w Vector of global and local weights
w(i,0) Initial local weights of DPi

lp, g,m Learning params., nbr. of global
and local iterations

QR Querier request

σ(·), d Activation function, approx. degree

am Multiplicative depth of σ(·)

I(·) Indicator function

ni The number of data samples per DPi

P 2(x) Next power of 2 of x

N1, N2 Diagonal approach parameters.
α, ρ Learning and elastic rates

sk, pk, evk Secret, public, evaluation keys

〈v〉 Encrypted vector v

|ct| Size of fresh ciphertext ct

N , Q Ring dimension, Fresh ciphertext modulus

L Number of available levels

τb Minimum level for Dbootstrap(·)

η Std. deviation of the noise distribution

∆, mc Plaintext Scale, Chain of moduli variables

DM Dot product

Table 6. Frequently Used Symbols and Notations.

	Scalable Privacy-Preserving Distributed Learning
	1 Introduction
	2 Related Work
	3 Secure Federated Training and Evaluation
	3.1 Problem Statement
	3.2 Solution Overview

	4 SPINDLE Design
	4.1 Background
	4.2 SPINDLE Protocols
	4.2.1 TRAINING
	4.2.2 PREDICTION

	5 System Operations
	5.1 Cryptographic Operations
	5.2 MAP Vector-Matrix Multiplications
	5.3 Optimized Activation Function

	6 System Configuration
	7 System Evaluation
	7.1 Theoretical Analysis
	7.2 Empirical Evaluation

	8 Extensions
	8.1 Malicious Adversaries
	8.2 More Complex ML Models.

	9 Conclusion
	A Multiparty Homomorphic Encryption (MHE)
	B Activation Functions
	C Security Analysis
	D Security of DBootstrap()
	E Evaluation
	E.1 Theoretical Analysis
	E.2 Communication
	E.3 Evaluation Datasets
	E.4 Comparison with Prior Art

	F Modular Extensions
	G Notations

