David Froelicher's Personal Page
David Froelicher's Personal Page
Home
Publications
Talks
Awards & Press Articles
Thesis
Experience
Teaching
Academic Service
Reviewer
Light
Dark
Automatic
Publications
Type
1
2
5
Date
2024
2023
2021
2020
2017
Privacy-Enhancing Technologies in Biomedical Data Science
The rapidly growing scale and variety of biomedical data repositories raise important privacy concerns. Conventional frameworks for …
H. Cho
,
David Froelicher
,
N. Dokmai
,
A. Nandi
,
S. Sadhuka
,
M. Man-Hou Hong
,
B. Berger
PDF
Link
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets
Finding related individuals in genomic datasets is a necessary step in many genetic analysis workflows and has broader societal value …
M. Hong
,
David Froelicher
,
R. Magner
,
V. Popic
,
B. Berger
,
H. Cho
Code
bioRxiv
Secure and Federated Genome-Wide Association Studies for Biobank-Scale Datasets
Sharing data across multiple institutions for genome-wide association studies (GWAS) would enable discovery of novel genetic variants …
H. Cho
,
David Froelicher
,
J. Chen
,
M. Edupalli
,
A. Pyrgelis
,
J. R. Troncoso-Pastoriza
,
J.-P. Hubaux
,
B. Berger
PDF
Cite
Code
Link
Scalable and Privacy-Preserving Federated Principal Component Analysis
Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the …
David Froelicher
,
H. Cho
,
M. Edupalli
,
J. S. Sousa
,
J.-P. Bossuat
,
A. Pyrgelis
,
J. R. Troncoso-Pastoriza
,
J.-P. Hubaux
,
B. Berger
PDF
Cite
Link
Trailer Video
Video
sfkit: A Web-Based Toolkit for Secure and Federated Genomic Analysis
Advances in genomics are increasingly depending upon the ability to analyze large and diverse genomic data collections, which are often …
S. Mendelsohn
,
David Froelicher
,
D. Loginov
,
D. Bernick
,
B. Berger
,
H. Cho
PDF
Cite
Link
Truly Privacy-Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic Encryption
Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities …
David Froelicher
,
J. R. Troncoso-Pastoriza
,
J. L. Raisaro
,
M. Cuendet
,
J. S. Sousa
,
H. Cho
,
B. Berger
,
J. Fellay
,
J.-P. Hubaux
PDF
Cite
Link
Scalable Privacy-Preserving Distributed Learning
In this paper, we address the problem of privacy-preserving distributed learning and the evaluation of machine-learning models by …
David Froelicher
,
J. R. Troncoso-Pastoriza
,
A. Pyrgelis
,
S. Sav
,
J. S. Sousa
,
J.-P. Bossuat
,
J.-P. Hubaux
PDF
Cite
Slides
Link
Talk
POSEIDON: Privacy-Preserving Federated Neural Network Learning
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an N-party, federated …
S. Sav
,
A. Pyrgelis
,
J. R. Troncoso-Pastoriza
,
David Froelicher
,
J.-P. Bossuat
,
J. S. Sousa
,
J.-P. Hubaux
PDF
Cite
Link
Ultra-Fast Homomorphic Encryption Models enable Secure Outsourcing of Genotype Imputation
Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing …
M. Kim
,
A.Harmanci
,
J.-P. Bossuat
,
S. Carpov
,
J. H. Cheon
,
I. Chillotti
,
W. Cho
,
David Froelicher
,
N. Gama
,
M. Georgieva
,
S. Hong
,
J.-P. Hubaux
,
D. Kim
,
K. Lauter
,
Y. Ma
,
L. Ohno-Machado
,
H. Sofia
,
Y. Son
,
Y. Song
,
J. Troncoso-Pastoriza
,
X. Jiang
PDF
Cite
Link
Code
Privacy-Preserving Data Sharing and Computation Across Multiple Data Providers with Homomorphic Encryption
J.R. Troncoso-Pastoriza
,
David Froelicher
,
P. Hu
,
A. Aloufi
,
J.P. Hubaux
Cite
Link
MedCo^2: Privacy-Preserving Cohort Exploration and Analysis
David Froelicher
,
M. Misbach
,
J. R. Troncoso-Pastoriza
,
J.L. Raisaro
,
J.-P. Hubaux
PDF
Cite
Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed Datasets
Data sharing has become of primary importance in many domains such as big-data analytics, economics and medical re- search, but remains …
David Froelicher
,
J.R. Troncoso-Pastoriza
,
J.S. Sousa
,
J.P. Hubaux
PDF
Cite
Link
Code
UnLynx: A Decentralized System for Privacy-Conscious Data Sharing
Current solutions for privacy-preserving data sharing among multiple parties either depend on a centralized authority that must be …
David Froelicher
,
P. Egger
,
J. S. Sousa
,
J. L. Raisaro
,
Z. Huang
,
C. Mouchet
,
B. Ford
,
J.-P. Hubaux
PDF
Cite
Link
Talk
Code
Slides
SPORT: Sharing Proofs of Retrievability across Tenants
Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret …
F. Armknecht
,
J.-M. Bohli
,
G. Karame
,
David Froelicher
PDF
Cite
Link
Cite
×