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Abstract

The rapidly growing scale and variety of biomedical data repositories raise
important privacy concerns. Conventional frameworks for collecting and
sharing human subject data offer limited privacy protection, often neces-
sitating the creation of data silos. Privacy-enhancing technologies (PETS)
promise to safeguard these data and broaden their usage by providing means
to share and analyze sensitive data while protecting privacy. Here, we review
prominent PETS and illustrate their role in advancing biomedicine. We de-
scribe key use cases of PE'Ts and their latest technical advances and highlight
recent applications of PETS in a range of biomedical domains. We conclude
by discussing outstanding challenges and social considerations that need to
be addressed to facilitate a broader adoption of PETs in biomedical data
science.
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1. INTRODUCTION

Data sharing is a vital force in biomedical innovation. Public data repositories and biobanks al-
low researchers at various organizations to analyze vast arrays of human subject data beyond what
they may be able to collect themselves. Many academic labs, commercial enterprises, and hospitals
have joined to form collaborative consortia to share biomedical data in the hope of extracting in-
sights thatare inaccessible to individual entities due to limited dataset sizes. Policies and guidelines
that promote the public dissemination of research data established by government entities (e.g.,
National Institutes of Health Data Management and Sharing Policy; https://sharing.nih.gov)
and international standard-setting organizations such as the Global Alliance for Genomics and
Health (1) have played pivotal roles in preserving the culture of data sharing among the biomed-
ical community, a tradition rooted in landmark collaborative efforts such as the Human Genome
Project.

As we enter the era of personalized medicine, broader sharing of biomedical data is becom-
ing more essential than ever. The limited diversity of human populations represented by existing
biomedical datasets has reinforced inequities in how different groups benefit from biomedical
advances (2). Studying rare diseases often requires merging small patient cohorts across organi-
zations to enhance statistical power (3). Furthermore, accurately inferring health-related insights
for each unique individual requires access to computational models trained on large and multi-
modal datasets capturing the wide spectrum of individual variation in health and disease. Although
recently created biobanks [e.g., the All of Us Research Program (4)] have taken a significant step
toward recruiting diverse study participants, these resources are increasingly stored within siloed
computing environments, limiting the scope and use of these datasets.

To further expand data-sharing efforts in biomedicine, growing concerns about the privacy
risks must be addressed with robust mitigation measures. In the absence of such measures, we
may witness a greater dependence on restricted data silos, further compounded by the recent
surge in more stringent privacy regulations [e.g., the General Data Protection Regulation (GDPR)
in the European Union] and the escalating risks associated with the increasing data scale and
computational advances in biomedicine. Moreover, a major data breach has the potential to erode
public trustin the scientific enterprise. The loss of trust could not only hinder the efforts to gather
large datasets but also worsen inequities by disproportionately affecting the willingness of certain
populations to participate in studies.

Privacy-enhancing technologies (PETS) offer promising technical solutions to overcome these
challenges by employing a variety of mathematical, algorithmic, and hardware design approaches
to enable the sharing and analysis of sensitive data while protecting privacy (Figure 1). PETS en-
compass a broad range of techniques that address different data-sharing scenarios and introduce
various trade-offs in terms of the type of supported analyses, computational cost, and the degree of
privacy protection offered. In this review, we focus on technologies that are most widely studied in
the literature, including homomorphic encryption (HE), secure multiparty computation (MPC),
trusted execution environment (TEE), differential privacy (DP), and federated learning (FL). Re-
cent advances have greatly increased the applicability of each of these technologies in biomedicine,
as we illustrate in this review. Unlike existing reviews that describe PETs as a potential solution to
data-sharing challenges in biomedicine (5-9), we focus on providing an accessible summary of the
latest advances in PE'TS, examining both their technical foundations and biomedical applications.

The rest of this review is organized as follows. Section 2 presents background on biomedical
data privacy, covering its historical context and key concepts. Section 3 outlines the scenarios
in biomedical research that involve data sharing. Section 4 delves into each PET, providing
an overview of techniques, recent advances, limitations, and recent publications, exploring its
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Figure 1

Privacy-enhancing technologies (PETs) provide a range of mathematical, algorithmic, and hardware-based
solutions to enable the sharing and analysis of sensitive biomedical data in various settings while protecting
data privacy.

application to biomedical tasks. Section 5 reviews related techniques that help facilitate the
sharing of biomedical data. Finally, in Section 6, we conclude by discussing open challenges and
highlighting key directions for future work.

2. BIOMEDICAL DATA PRIVACY: CHALLENGES
AND EXISTING SAFEGUARDS

Data privacy challenges in biomedicine have continually evolved over the past several decades,
shaped by technological advances, increasing public awareness, and changes in policies and laws.
From the 1960s to the 1980s, the biomedical community saw the establishment of ethical princi-
ples in human subject research, exemplified by documents such as the Belmont Report (10). At the
same time, concerns about patient privacy increased due to the digitization of medical records. The
1990s saw the establishment of the Common Rule and the Health Insurance Portability and Ac-
countability Act (HIPAA) (11), marking initial efforts to create legal frameworks for safeguarding
biomedical data in both research and health care. The completion of the Human Genome Project
and the rapid growth of genetic research in the 2000s intensified concerns about the protection
of human subjects and their genetic privacy. The 2010s witnessed a surge in privacy concerns in
broader societal contexts fueled by the rise of social media, major data breaches, and controversy
surrounding government surveillance (12, 13). The international community responded to these
concerns by strengthening oversight over the collection, sharing, and use of personal information,
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such as via GDPR, enacted in 2018. More recent examples include Arizona’s and California’s
2021 genetic privacy laws (14), which strengthened privacy requirements for storing and sharing
genetic data, as well as the National Institute of Standards and Technology’s genomic cyberse-
curity initiative (https://www.nccoe.nist.gov/projects/cybersecurity-genomic-data), which
called for new security standards in genomics. Currently, privacy concerns persist and extend to
new biomedical domains, such as digital health [e.g., electronic health records (EHRs), mobile
applications, and wearable devices], multiomics, and epidemic responsiveness in the wake of the
COVID-19 pandemic (15). The growing number of large-scale biobanks and data repositories
turther amplifies these challenges.

The risks posed by biomedical data breaches are multifaceted. Although individuals have dif-
ferent notions of an acceptable privacy risk, unauthorized exposure of private information related
to one’s biology and health may result in emotional distress, stigmatization, and discrimination
in employment, education, and insurance opportunities. Perhaps more concerning, these harms
could extend to families and demographic groups, for example, by disclosing genetic relationships
between individuals or elevated health risks within groups, respectively. From the perspective of
organizations that manage sensitive biomedical data, data breaches can lead to financial penal-
ties, legal consequences, operational disruptions, and reputation damage. These risks are not just
hypothetical—as of this writing, a lawsuit has been filed against 23andMe for a data breach that
compromised nearly 1 million customers, including their full names, birthdates, and DNA pro-
files, which were being sold on the dark web for up to $10 per leaked individual (16). Such leaks, if
repeated, would lead to a decline in trust in the biomedical research enterprise and health systems,
which would further set back future research efforts and impede scientific progress.

Biomedical privacy breaches can occur through multiple routes, each posing unique challenges
(8, 17). Phenotype inference aims to deduce an individual’s traits or health conditions from dif-
ferent types of biomedical data, often in an unexpected manner. Reidentification occurs when
inadequately anonymized data are linked back to an individual. This may involve combining mul-
tiple datasets, utilizing auxiliary information, or exploiting vulnerabilities in the deidentification
process. Data linkage integrates information from different datasets to construct a more com-
prehensive profile of an individual, allowing attackers to reveal identity, health status, or other
sensitive information about the individual. Even when the complete dataset, including individual-
level information, is not directly shared, privacy may still be breached: Data reconstruction attacks
attempt to assemble fragments of available information to reveal a portion of the original data;
and membership inference attacks focus on determining whether an individual is part of a spe-
cific dataset, which can disclose whether the person belongs to a sensitive or stigmatized group,
potentially leading to privacy violations.

Conventional approaches for protecting the privacy of biomedical data include policies and
laws, technical security measures, and contractual agreements. Legal and financial penalties help
serve as deterrents to the misuse of biomedical information; both HIPAA and GDPR prescribe
such penalties for noncompliance. The standard practice for securing biomedical data involves
encrypting data at rest, employing a secure computing infrastructure, and deidentification strate-
gies (18). Access control and user authentication mechanisms also are widely used to ensure
that only authorized individuals can access sensitive data. Furthermore, researchers and orga-
nizations that share access to sensitive data typically establish data use agreements (DUAs) to
define the permitted use of the data and guidelines for data management. Similarly, business
associate agreements, which are contracts between HIPAA-covered entities (e.g., hospitals) and
their business associates (e.g., third-party service providers or collaborators), are an important tool
for ensuring that entities that handle protected health information comply with data protection
standards.
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Although these approaches offer useful safeguards for biomedical data, they do not eliminate
the possibility of data breaches or reidentification and rely primarily on limiting access to data
to achieve security, which has resulted in many datasets being isolated and placed beyond the
reach of most researchers. In addition, the ability to detect breaches and enforce penalties can
be limited in practice; legal and policy criteria standards that determine what data qualify as
private or sufficiently deidentified for sharing lack clear definitions. As a result, many existing
datasets are either shared insecurely based on trust or deemed ineligible for sharing due to privacy
risks.

3. DATA-SHARING SCENARIOS AND LIMITATIONS

Privacy risks and data-sharing constraints vary across different scenarios in biomedical research
and practice. Here, we outline the typical data-sharing scenarios (as illustrated in Figure 1) as well
as the challenges faced by stakeholders in each context.

3.1. Study Participation

A private individual may voluntarily contribute health data and other personal information to
studies (either clinical or nonclinical), data repositories, and third-party services. Participants typ-
ically provide informed consent, which outlines the details of data sharing, including the purpose,
scope, and potential risks involved. Data sharing benefits participants by improving the collective
understanding of health and disease, which could lead to better treatments or other health-related
decisions. In the context of some services, participants may also receive personalized data insights.
Privacy concerns are a key factor in an individual’s decision to participate in a study (19). The
adequacy of informed consent remains a topic of ongoing debate, particularly with regard to the
ethics of obtaining broad consent for the secondary use of data (20). Effectively communicating
privacy risks can also be challenging, as some risks require technical expertise to fully understand
them or are poorly understood even among researchers.

3.2. Queryable Databases

Queryable databases are specifically designed to allow users to retrieve information through
queries, providing a structured and efficient way to access biomedical data. Examples include
patient registries used for study recruitment and various databases containing annotated ge-
netic variants (21), EHRs (22), and clinical trial data (23). While the restricted nature of queries
minimizes information leakage, studies have shown that even with these limitations, unintended
disclosures can occur (24). Such concerns may discourage individuals from participating in these
databases as well as pose data management challenges to the database provider.

3.3. Analytic Services

This refers to the practice of delegating computational tasks to external entities that have access
to restricted models or data resources, or more computing resources. The increasing computa-
tional demands of biomedical analysis workflows are compelling researchers to increasingly use
these third-party services (25), many of which are hosted in cloud environments. However, pri-
vacy concerns or regulations can limit the use of these services (e.g., a European Union researcher
wishing to upload data to a service operating in a non-European Union country). Moreover,
service providers may be required to introduce measures to protect the auxiliary models and
data used by the server, which could be leaked through the analysis results returned to users
(26).
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3.4. Collaborative Studies

There is an increasing need for researchers from different institutions or countries to collaborate
on shared research goals by combining their data to obtain a more complete understanding of the
biomedical phenomenon of interest. This scenario often involves the establishment of consortia
focused on specific health conditions or research areas. However, organizations may need to com-
ply with policies that limit or prohibit external sharing of data, a problem that is exacerbated if
entities operate in different regulatory environments or countries.

3.5. Public Data Release

This involves making biomedical datasets and analysis results openly accessible to the broader
scientific community and the public. This practice supports the transparency and reproducibility
of scientific studies and promotes collaborative efforts such as data science competitions (e.g.,
Kaggle; https://www.kaggle.com/). It also extends the utility of collected datasets by allowing
researchers around the world to reanalyze existing data. However, releasing a dataset containing
individual-level information poses great privacy risk and is feasible only in rare circumstances.
Care must also be taken when releasing simulated or redacted datasets based partially on private
data, as these may still lead to privacy leakage.

3.6. Public Health Monitoring

The COVID-19 pandemic motivated the design of public health systems capable of monitoring
disease outbreaks and facilitating responses (e.g., exposure notification apps). The effective oper-
ation of these systems may require the collection of a broad range of personal information beyond
health status, including demographic, geolocation, and social activity data. In addition, sharing
these data across jurisdictions may be essential for a more accurate understanding of infectious
agents. However, the possibility of harming individuals due to the disclosure of private information
remains a significant concern (15), which can prevent the widespread adoption of these systems.

4. PRIVACY-ENHANCING TECHNOLOGIES AND THEIR
BIOMEDICAL APPLICATIONS

PET: represent a collection of computational techniques to safeguard sensitive biomedical data.
Collectively, these technologies enable the development of privacy-by-design methods for shar-
ing and analyzing biomedical data. These improve both the privacy and utility of biomedical
data beyond what is feasible given existing security practices and contractual safeguards, such as
DUAs. We describe each technology in detail and discuss recent methodological advances and
applications within the biomedical domain.

4.1. Secure Multiparty Computation

MPC allows multiple parties to work together to perform computations collectively on their pri-
vate inputs without revealing the input to each other. There are two main techniques used for
MPC: garbled circuits and secret sharing.

First introduced by Yao in 1986 (27), a garbled circuit enables secure evaluation of a function,
represented as a Boolean circuit, between two parties with private input. The input and output of
each logical gate in a garbled circuit are randomly masked to prevent the evaluator from gaining
information during the circuit evaluation. The input of one party is securely communicated to the
other party using the cryptographic primitive of oblivious transfer, which then allows the receiver
to evaluate the circuit without knowing the raw input. Although the exponential scaling of the
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circuit size for complex analysis tasks often leads to high communication and computational costs,
several enhancements (28-31) have improved the efficiency of these schemes (32-34).

Secret sharing schemes (35, 36) allow a group of parties to collectively encode a private number
by dividing it into random shares, which are held individually by the parties. The private number
can be reconstructed only when a predefined number of shares are combined. For example, in ad-
ditive secret sharing schemes, which are most commonly used in practical settings, secret shares
are random elements of a ring (an algebraic structure exemplified by a set of integers modulo a
certain number) that add up to the private value. This ensures that all parties’ shares must be com-
bined to reveal the secret; any subset reveals no information that can be used to infer the secret.
Securely adding two secret-shared numbers, x and y, involves each party adding their individual
shares for x and y, resulting in new shares representing x + y. Secure multiplication requires in-
teraction between parties (37) but preserves the confidendality of the private input by masking
the numbers shared between parties. Other operations, such as division, square root, and com-
parison, are performed using addition, multiplication, and special routines that exploit the bitwise
representation of private values. These operations can be combined to securely perform various
analyses on private data held by multiple parties.

Many frameworks and compilers have been developed to ease the implementation of MPC
algorithms leveraging various building block protocols (38). Hybrid schemes (39, 40) and com-
pilers (32, 38, 41), which combine different MPC methodologies to improve efficiency, have also
been proposed. For example, ABY (41) proposed switching between garbled circuits and different
types of secret sharing (integer or Boolean) to perform each operation in the domain where it is
most efficient (e.g., evaluating comparisons in a two-party setting using garbled circuits or eval-
uating multiplexors or other bitwise operations with more than two parties using Boolean secret
sharing). These frameworks have been extended and optimized for applications in machine learn-
ing (ML), such as training and inference of neural network models (42-45). Recent enhancements
of core operations such as secure comparison (46) have further improved the performance and
versatility of MPC frameworks.

The primary limitation of MPC is its substantial communication cost. While garbled circuits
allow most of the computation to be performed noninteractively by transferring the entire circuit
in a single round of communication, the circuit is typically limited to Boolean operations, and the
size of the circuit can become impractically large for sophisticated numerical calculations. Secret
sharing enjoys greater analytic flexibility and efficiency in general compared to garbled circuits,
but secret sharing—based MPC typically requires many rounds of interaction for complex tasks,
a potential bottleneck in limited communication settings (e.g., a wide-area network with large
round-trip delays). Furthermore, the requirement that the entire input dataset be secret-shared
among the parties can be a hurdle for large-scale biomedical datasets.

Several recent works have developed MPC protocols for a range of analysis tasks in
biomedicine (47-52). A common goal of these works is to improve the efficiency of MPC by
redesigning the analysis task in a way that is more amenable to efficient computation using
MPC operations. For example, Cho et al. (47) introduced a generalization of secret sharing
techniques aimed at minimizing redundant computation, which led to an efficient algorithm
for genome-wide association studies (GWAS), involving sophisticated linear algebra tasks such
as principal component analysis. This work was extended to address collaborative prediction of
drug-target interactions using a neural network model (53). Jagadeesh et al. (49) used garbled
circuits to efficiently perform Boolean operations (such as set intersection and difference) to
identify genetic variants of interest in patient genomes. Von Maltitz et al. (54) introduced an
MPC protocol for survival analysis based on the Kaplan-Meier estimator. A different approach
was taken by Smajlovi¢ et al. (55), who developed a Python-based compiler that transforms a
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high-level analysis code into MPC executables incorporating automated optimization based on
static code analysis. Such tools can help accelerate the development of MPC applications for
various biomedical tasks by making the techniques more accessible to biomedical practitioners.

4.2. Homomorphic Encryption

HE refers to a form of encryption that allows direct computations on encrypted data. Earlier
HE schemes, such as those by Rivest et al. (56), Elgamal (57), Paillier (58), and Goldwasser &
Micali (59), were known as leveled or somewhat HE schemes, supporting specific types of op-
erations, for example, additions only or multiplications only, or a limited number of them. In
2009, Gentry (60) introduced the first construction of a fully homomorphic encryption (FHE)
scheme that allows arbitrary arithmetic computations through a bootstrapping technique, which
refreshes a ciphertext (encrypted data) to support additional operations. To address the limited
concrete efficiency of the initial scheme of Gentry, which required several minutes of runtime
for each bit operation (61), several schemes were later proposed (62—65) that reduced the overall
computational cost of FHE and thereby enabled its use in practical applications.

Akin to standard encryption schemes, the security of HE is based on the hardness of well-
studied mathematical problems. Many HE schemes are based on the ring learning with errors
(RLWE) problem (66, 67), a lattice-based problem where the goal is to distinguish whether a set
of ring elements is sampled randomly or approximately the result of multiplying a known set of
elements with a common secret element. This problem is shown to be extremely difficult to solve
without knowing the secret but is otherwise easy, translating into the guarantee that an entity can
decrypt a ciphertext only if the decryption key is known. The random noise that is introduced
into the ciphertext to maintain the difficulty of this problem increases with each homomorphic
operation. Unlike schemes that precisely perform computation at the expense of reducing the
range of encoded values (62-64), the CKKS scheme by Cheon et al. (65) adds noise directly to
the data values, enabling efficient operations at a small loss in precision. CKKS has been widely
adopted in scientific applications where a small amount of noise can be tolerated. In all RLWE-
based schemes, a single ciphertext encodes multiple values, and homomorphic operations such as
addition and multiplication are performed simultaneously on all values in a ciphertext—known as
the single-instruction, multiple-data property. Exploiting this property can improve the scalability
of these schemes.

Notable recent developments include more efficient bootstrapping techniques (68, 69) and
alternative constructions that offer a trade-off between different types of operations. For example,
the TFHE scheme by Chillotti et al. (70) is constructed based on the mathematical structure
of the torus and permits efficient bootstrapping yet is limited to Boolean or bitwise operations.
Furthermore, several HE compilers have been proposed (71) to streamline the development and
optimization of HE algorithms, for example, to simplify the management of ciphertext noise.
Tailored frameworks have also been developed for the secure training of predictive ML models (72,
73).

In the biomedical domain, HE has mainly found applications in the outsourcing of computa-
tional tasks involving sensitive data. These computations may be challenging for individual users
to perform because of the scale of the problem (in terms of both dataset size and computational
complexity) or because of limited access to additional data or models required for the analysis. HE
helps to ensure that the user’s data remain private when analysis is delegated to a third party. For
example, HE-based solutions have been proposed for privately outsourcing the detection of heart
conditions in electrocardiogram data (74), as well as cardiovascular risk prediction based on health
records (75). Many works have tackled the computation of GWAS statistics on encrypted data, ad-
dressing a range of statistics and application settings (76-80). Other tasks explored in the literature
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EXTENDING HOMOMORPHIC ENCRYPTION TO COLLABORATIVE ANALYSIS
SETTINGS: MULTTPARTY HOMOMORPHIC ENCRYPTION

A recent line of work explores a novel use of HE to facilitate collaborative studies. Conventional HE schemes,
described in Section 4.2, allow any party with the decryption key to access the private data. In contrast, threshold HE
schemes (87-90) use a decryption key that is secret-shared among a group of parties, allowing them to individually
operate over encrypted data while ensuring that only the data values that are agreed upon among the parties can
be decrypted. Similarly, multi-key schemes (91, 92) allow each party to use their own key and modify operations to
support data encrypted under different keys.

These multiparty HE (MHE) schemes open the door to HE-based algorithms that can analyze private data dis-
tributed among multiple parties, analogously to the MPC setting. Recent studies (93, 94) have shown that these
schemes can enable seamless integration of HE operations with efficient interactive routines, including MPC pro-
tocols, to reduce the cost of challenging operations such as bootstrapping (89). Importantly, these schemes allow
each party to leverage efficient local computations using the locally available unencrypted data. MHE can thus
help address the scalability limitations of standalone applications of HE or MPC by offering a federated analysis
paradigm in which it is necessary neither to secret-share the entire private dataset among the parties nor to encrypt
and centralize all data at a single site for analysis.

Applications of MHE are being explored in various domains, including distributed ML and linear algebra (95—
98) as well as collaborative biomedical analyses, such as GWAS (88, 93, 94, 99) and cell type classification (100).
Recent results (94) demonstrate the practicality of this approach in handling complex biomedical tasks on the scale of
modern biobanks that include hundreds of thousands of individuals. However, addressing each application currently
requires time-consuming effort to design and optimize algorithms to achieve practical runtimes. Ongoing work on
streamlining the development and use of these solutions, e.g., through cloud-based analysis platforms (101) and
easy-to-use programming frameworks or libraries (55, 102), can help make these tools more widely available.

include count queries on genomic and medical databases (e.g., for cohort exploration) (81, 82), de-

tection of genetic parent-child relationships (83), and disease risk prediction using both clinical
and genomic information (74, 84). Finally, Kim et al. (85) and Giirsoy et al. (86) recently illustrated
secure imputation of an encrypted private genome.

These advances have brought HE-based solutions closer to meeting the requirements of

biomedical applications. Nevertheless, the scope of these applications remains restricted due to

several factors, including the substantial computational overhead of homomorphic operations

compared to unencrypted analysis, the need to approximate nonlinear operations using additions

and multiplications, and the practical limits on the complexity of the analysis task due to the high

cost of bootstrapping. Moreover, most of the aforementioned solutions require that all input data

be encrypted and transferred to the entity performing the computation, which can be a significant
burden for large datasets. In the sidebar titled Extending Homomorphic Encryption to Collab-
orative Analysis Settings: Multiparty Homomorphic Encryption, we describe a recent technical

advance that helps address these limitations.

4.3. Trusted Execution Environments

A TEE is a secure area within the main processor, also called an enclave, that ensures the safe

and isolated execution of software. This isolation guarantees that the memory content, end-to-

end communication with external parties, and control flow of the application are protected from

untrusted or malicious processes running within the same hardware, including a malicious oper-
ating system or hypervisor (103, 104). In certain TEE architectures, the binary executable of an
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application can also be verified through a process called remote attestation (105). To achieve these
security properties, TEE relies on core hardware security components built into the processor
that cannot be manipulated by software. These components typically comprise a memory encryp-
tion engine and controller to isolate memory access and integrated circuits for cryptographic key
storage and operation.

Recent TEE developments have focused on supporting third-party software deployment in an
untrusted cloud environment, addressing the deployment of both user-level applications and vir-
tual machines (VMs). Popular TEE platforms include Intel Software Guard Extension (SGX)
(106) for user-level applications and Intel Trust Domain Extensions (107) and AMD Secure
Encrypted Virtualization (108) for VMs. Nvidia recently introduced an update to its graphics pro-
cessing unit (GPU) architecture that enables GPU computation in TEE (109). In a mobile setting,
Arm TrustZone (104) is a ubiquitous TEE platform on Arm central processing units (CPUs), but
generally a limited set of TEE functionalities are available for mobile applications.

Although TEEs offer the capability to confidentially analyze private data with computational
efficiency and functionalities similar to conventional computing environments, their major draw-
back lies in the complexities of achieving hardware-based security. Unlike MPC and HE, which
rely on minimal and well-established cryptographic primitives, TEEs’ hardware-based approach
introduces unique vulnerabilities. Some vulnerabilities are the result of CPU architectural bugs
that allow a malicious process to extract protected data from an enclave (110); manufacturers typ-
ically promptly patch these problems once they are discovered. Other limitations are inherent in
the TEE architecture and lead to the issue of side channels—indirect pathways for information
leakage (111, 112). For example, a TEE enclave’s access patterns to memory pages can inadver-
tently reveal sensitive information stored in the secure area to an attacker. Although such attacks
require significant effort, software-level mitigation is necessary when the highest level of secu-
rity is required. One strategy involves ensuring that the memory access or timing patterns of the
program do not depend on sensitive information (113). However, such mitigation can incur an
additional computational burden and require relevant expertise during algorithm development.

Despite these drawbacks, TEEs have a promising future with vested interests from major CPU
producers such as Intel, AMD, and Arm, who continue to address security issues and improve their
TEE platforms. Cloud service providers such as Google Cloud Platform and Microsoft Azure
offer TEE-enabled computing infrastructure. In addition, initiatives such as the Confidential
Computing Consortium (https://confidentialcomputing.io) and the Trusted Execution Envi-
ronment Provisioning (TEEP) Working Group (https://datatracker.ietf.org/wg/teep/about)
of the Internet Engineering Task Force have been formed to support open-source projects and
the development of standards related to TEE. In the research community, many software tools
have been introduced in recent years to ease the translation of existing software to run securely
on TEE platforms (112).

In the biomedical domain, TEEs have gained significant traction due to their ability to securely
outsource the analysis of biomedical data and to facilitate the development and deployment of
health artificial intelligence (AI) tools on a large scale. Notable real-world examples include
BeeKeeperAl (114), a privacy-preserving health care Al company, and AOK, a network of 11 re-
gional health insurers in Germany. These organizations utilize Intel SGX to protect confidential
patient data, complying with regulations such as HIPAA, GDPR, and Germany’s Patient Data
Protection Act (115). Applications of TEE in genomics are also emerging. An example is a fed-
erated GWAS service based on Intel SGX that securely aggregates data from multiple sites and
incrementally updates the statistics as study participants are added or removed (116). Data sketch-
ing techniques for enhancing the efficiency of GWAS computation in Intel SGX have also been
proposed (117). Considering other genome analysis tasks, Widanage etal. (118) demonstrated read
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mapping in Intel SGX and described a generalization of their tool to other workflows. Dokmai
etal. (113) proposed a TEE-based service for secure genotype imputation, introducing techniques
to achieve resilience against side channels while maintaining accurate imputation performance.

4.4. Differential Privacy

DP is a mathematical definition of privacy that provides rigorous privacy protection by ensuring
that the removal or addition of a single individual in a dataset does not lead to a distinguishable
change in the analysis results (119, 120). Formally, given ¢ > 0, a randomized mechanism A satisfies
e-DP if, for all datasets D; and D, that differ in one record, and for any subset O of all possible
outputs of A, we have P [A(D;) € O] < ¢*P [A(D;) € O]—intuitively, this means that any result
is similar in likelihood between similar datasets. The parameter ¢ is called the privacy budget
and is used to specify the level of privacy protection. DP mechanisms generally satisfy the privacy
guarantee by adding noise to the data, where a smaller ¢ provides more privacy at the cost of greater
loss in accuracy by adding more noise. Standard DP techniques include Laplace, Gaussian, and
exponential mechanisms, representing different approaches to sampling the noisy analysis result.

Various techniques have been developed to minimize noise addition and obtain a more desir-
able trade-off between privacy and utility. For example, some DP formulations relax the notion
of privacy for better utility: (¢, §)-DP, also known as approximate DP (120), requires that e-DP
be satisfied with a probability at least 1 — §. Concentrated DP (121), zero-concentrated DP (122),
and Rényi DP (123) view privacy loss as a random variable and bound the average loss instead of
the worst-case loss.

Key properties of DP include postprocessing, which ensures that further analysis of data that
satisfy DP does not result in any additional privacy leakage, and composition, which allows mul-
tiple mechanisms operating on the same data to be combined to provide a joint DP guarantee. As
a result of these properties, adding DP noise to different components of the analysis pipeline—
for example, input, output, optimization objectives (124, 125), or gradients (126, 127)—can have
a significant impact on overall precision depending on the analysis task. Another key factor that
influences the amount of noise is sensitivity, which measures the maximum change in the analysis
output due to a single-record change in the data. Different approaches have been proposed to ana-
lyze the sensitivity of a given function [e.g., global, local, or smooth sensitivity (128)]. Due to these
considerations, it is often necessary to carefully design DP mechanisms for specific applications
to optimize their performance.

For example, in a multiparty setting, DP can be implemented either locally, by individual data
providers, or globally, by a central server that aggregates analysis results; these approaches are
called local differential privacy (LDP) and centralized differential privacy (CDP), respectively.
Although CDP typically requires less noise by adding it directly to aggregated data, it may be more
vulnerable to privacy leakage because it relies on a trusted third party for data aggregation. On the
other hand, LDP offers DP at the level of individual data providers while increasing the overall
amount of noise. Common data perturbation techniques to achieve LDP include the randomized
response and its variants (129-131).

DP has recently been deployed by various entities to address private collection of statistics and
publication of privatized datasets. The RAPPOR technology by Erlingsson et al. (132) uses ran-
domized response and bloom filters to privately collect usage statistics from the Chrome browser.
LDP has been deployed by Apple to collect information about emojis and search queries from its
devices (133) and by Microsoft for application-level telemetry in Windows 10 (134). In 2020, the
US Census Bureau released the census data with DP using the TopDown algorithm (135), which
hierarchically aggregates statistics based on geographic units.
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A key focus of DP applications in biomedicine has been on the release of GWAS statistics.
Uhlerop et al. (136) introduced DP mechanisms for releasing minor allele frequencies and
x’ statistics for case-control GWAS. This work was later extended by Yu et al. (137, 138) to
handle larger cohorts and logistic regression. An alternative approach based on the exponential
mechanism has also been proposed (139). Simmons & Berger (140) introduced an optimiza-
tion framework for privately reporting a fixed number of the most significant associations. In
subsequent work, Simmons et al. (141) developed DP methods for GWAS with correction for
population stratification. Other notable applications of DP include the sharing of genotypic
data (142), clinical trial data (143), and tabular medical records (144). DP has also been applied
in interactive database settings, for example, for count or membership queries (145, 146) and
genetic matching of patients (147). In the public health domain, DP has been used to support the
development of the COVID-19 Real-Time Information System for Preparedness and Epidemic
Response (148) and a mobile diagnostic system for coronary heart disease (149).

Despite these advances, the practical adoption of DP faces several technical challenges. Privacy
parameters (e.g., €) associated with DP methods are an important factor controlling the trade-off
between privacy and utility; however, there are no rigorous methods or standards for choosing
an acceptable value of these parameters for a given task. Since biomedical data are typically high-
dimensional, a large number of statistics need to be shared privately. Moreover, these data are often
analyzed using sophisticated algorithms comprised of many steps where DP could be incorporated.
As a result, designing effective DP mechanisms that optimally distribute the privacy budget can
be difficult. Another limitation is that DP cannot protect every dataset; for example, small datasets
typically require an overwhelming amount of noise for DP and need to be protected using other
strategies.

4.5. Federated Learning

FL allows multiple parties to collaboratively train ML models in a distributed manner (150). The
parties share the model parameters or updates (e.g., gradients) during training but do not directly
share the training data, hence mitigating privacy risks. Two main categories of FL use cases
include (#) cross-silo, in which a small number of parties hold a substantial fraction of the data,
and (b) cross-device, where a large number of devices (possibly millions) hold a small amount of
data (150). The former is more similar to traditional MPC settings where parties may represent
different institutions, each of which has collected data from many individuals, while the latter is
often found in consumer applications, where, for instance, millions of mobile phones may collect
personal user data.

In FL, each party is limited to their local share of the data in evaluating and updating the
model; thus, several approaches exist for synchronizing the state of the model across the parties.
The federated averaging technique asks each party to locally compute model updates that are sent
to a central server to be averaged and applied globally (151). The weights used to average these
updates are typically chosen as a function of the size and quality of each party’s data (152, 153).
More advanced methods such as federated matched averaging synchronize weights layer-wise via
matching to cope with permutation invariance in neural networks (154). Other approaches avoid
global synchronization and instead iteratively pass weights from party to party (155). Personalized
FL is another approach, whereby each party learns a different local model that incorporates both
the information from other parties and local data characteristics (156, 157).

The robustness of FL is a major challenge in practice. Issues such as network connectivity,
communication constraints, and resource constraints can prevent certain parties from fully par-
ticipating in every round of the protocol (158, 159). Heterogeneity across data silos or devices may
also introduce concerns about inequity and limited generalization of trained models; for instance,
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simple averaging techniques have been shown to lead to inaccurate results in small subpopulations
(160-162).

Another challenge is that FL. may provide limited privacy and security protection. For example,
by inspecting the model updates from other parties during multiple rounds of the protocol (163),
one hospital may be able to infer the characteristics of patients in another hospital. This could
reveal information such as the distribution of clinical labels, individual coordinates of feature vec-
tors, and sometimes even entire training inputs (164-166). Furthermore, a malicious adversary
could manipulate the data or the model to further their own goals at the expense of others (167).

The recent literature on FL introduces a wide range of techniques to address these limitations.
Combining FL with DP can provide rigorous bounds on privacy leakage (168, 169), although
doing so while maintaining the accuracy of the model can be challenging. If the central aggre-
gator is not trusted, parties may choose to use LDP to add noise to their local gradients before
aggregation (170). Alternatively, MPC, HE, or TEE can also support secure aggregation of model
weights so that no additional information is leaked other than aggregated results (163). Solutions
that protect model parameters throughout the entire training procedure using encryption tech-
niques have also been proposed (96-98). Robustness is often addressed by adapting the protocol
based on the qualities of each party. For example, some methods propose to detect and remove
outliers to learn from a core set of reliable parties. Others propose to alter the averaging weights to
produce fairer global models that perform comparably well on each party (162). Although existing
FL applications focus mainly on supervised learning, recent work extends FL to address other ML
tasks, including semisupervised, unsupervised, and reinforcement learning (171-173).

FL has touched upon numerous biomedical applications. In the cross-silo setting, FL. can im-
prove analytics and care for patients at various stages of health care by putting together more
extensive training data to improve the performance of ML models. Notable uses include rare dis-
ease analysis (174, 175), multihospital collaboration for medical image analysis (176-178), and
automated phenotyping and risk prediction from clinical notes (179-181). In the cross-device set-
ting, FL has the potential to transform mobile health (182). For example, FL can allow wearable
devices, such as Fitbits or Apple Watches, to adapt over time to the individual’s unique health
and lifestyle characteristics, such as resting heart rate, steps per day, and blood oxygen levels.
These models can enable more accurate health monitoring for individuals, for example, for gait
identification and fall detection (183, 184).

5. OTHER RELATED TECHNIQUES

Several workflows involving the exchange of private data have received special attention from the
privacy and security community to develop targeted methods that extend beyond the scope of
PETs described in Section 4. In this section, we highlight some of these techniques.

5.1. Private Information Retrieval

In private information retrieval (PIR), a client retrieves specific items of interest from a database
stored on a server without revealing the identity of the accessed items (185, 186). A naive approach
of downloading the entire database and querying it locally is impractical for large datasets. In
an HE-based solution, the client uploads an encrypted query, the server searches the database
homomorphically, and then it returns the result to the client for decryption. With practical lattice-
based HE (Section 4.2) and database preprocessing and amortization techniques (187, 188), recent
PIR protocols have been shown to scale to databases that include billions of entries (189-192).
Other works have extended PIR to more sophisticated queries such as keyword search in sparse
databases (193, 194) and batch querying (195, 196). In the biomedical context, PIR can enhance
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the utility of public data resources that require users to either download the entire database or
disclose private data (e.g., genetic mutations or patient records) to the server in order to query the
database. For example, PIR solutions have been proposed for outsourced storage of genomic data,
which support secure retrieval of variants of interest (197, 198).

5.2. Private Set Intersection

Private set intersection (PSI) addresses a problem closely related to PIR, where two parties, each
holding a set of items, wish to learn the intersection between the two sets without revealing any
other information to each other. PSI-size is a notable variant of PSI, where only the size of the
intersection is revealed. PSI has been extensively studied, leading to practical protocols for billions
of items and several variants addressing different trust assumptions, trade-offs between commu-
nication and computation, and number of parties (199-201). Several works have proposed PSI
protocols for the computation of genome similarity, viewing each genome as a set of variants:
Baldi et al. (202) introduced paternity testing based on PSI techniques (203, 204), and Wang
et al. (205) developed a PSI-based protocol for securely calculating the edit distance between
genomes.

5.3. Zero-Knowledge Proofs

Verification of computation, an essential component of trustworthy data analytics systems, can be
challenging when sensitive biomedical data are involved. A zero-knowledge proof (ZKP) (206) is a
cryptographic primitive, related to MPC and digital signatures (56, 207), that allows one to prove
the truthfulness of a statement about the data or the computation without disclosing sensitive
information. For example, Goldreich et al. (208) showed that generic ZKPs (209) can be used to
prove that a secure computation protocol (e.g., MPC) is carried out honestly without decrypting
any intermediate value. Although generic constructions typically incur impractical computational
overheads, recent advances have improved the efficiency of ZKPs under a variety of security
and model assumptions (210-213). Froelicher et al. (214) demonstrated that ZKPs for discrete
logarithms (215) can ensure the integrity of certain HE computations in a distributed health
analytics system. Chatel et al. (216) introduced a ZKP scheme based on the MPC-in-the-head
paradigm (217, 218), allowing direct-to-consumer analytic service providers to verify that the
user’s uploaded data are from a trusted source, thus preventing a malicious user from tampering
with the analysis result.

5.4. Blockchain

Blockchain provides a decentralized framework for securely recording and verifying transac-
tions in a distributed network. It uses cryptographic techniques to create a chain of blocks, that
is, a time-stamped list of transactions, providing transparency, immutability, and accountabil-
ity in data management. Beyond well-known applications in finance (e.g., Bitcoin), blockchain
has become increasingly relevant in biomedical domains (219). A key use case is to create a
secure and decentralized health information exchange to improve the management of medical
records and insurance claims among various stakeholders (220). It can also be used to create
a data-sharing platform to support biomedical research while providing data provenance and
accountability (221). Privacy protection of data exchanged through blockchains is a key chal-
lenge that often requires blockchains to be carefully combined with other encryption techniques
or PETs. Another focus of ongoing research is on improving the scalability and robustness
of blockchain networks, which is necessary for their deployment across a large network of
institutions.
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5.5. Synthetic Data Generation

Creating synthetic data that resemble real data without being directly linked to private individu-
als has become a useful privacy-aware data-sharing strategy (222). Public sharing of synthetic data
can support collaborative efforts, such as data analysis competitions and validation of computa-
tional models across institutions. It can also support various academic and educational activities,
for instance, by creating a realistic patient profile for use in training or public communication.
Techniques for generating synthetic data have evolved alongside ML advances, particularly in
deep generative models. The introduction of generative adversarial networks and diffusion mod-
els greatly improved the synthesis of various types of biomedical data, including medical images
(223, 224) and EHRs (225). However, the possibility that synthetic data can leak private infor-
mation about the original data used to train the models remains a major concern (226). Recent
studies have suggested that the greater expressiveness of modern generative models, in fact, in-
creases the likelihood of private training data being reconstructed (227). Although incorporating
DP into model training can help mitigate these risks (228), it can degrade the quality of the gener-
ated data, especially for high-dimensional data such as images and genomes. Future improvements
in both the quality and privacy of synthetic data will be crucial in expanding their use in settings
where direct sharing of data is necessary.

6. OPEN CHALLENGES AND OUTLOOK

As the field of biomedical data science expands to encompass a wider variety of data modalities,
more complex statistical models, and evolving computing environments, our understanding of pri-
vacy risks must also change. Studies that uncover novel privacy risks in emerging data types [e.g.,
transcriptomics (84, 229-231), proteomics (232), and wearable devices (233)] and computational
models [e.g., diffusion and large language models (227, 234)] will be particularly valuable. Inte-
grating these findings into practical guidelines and policies will require a thoughtful examination
of the evolving incentives and capabilities of potential adversaries (235-237).

A critical aspect of PETS is the varying degrees of privacy protection they offer and how they
can be aligned with our social values and the needs of practitioners. While acknowledging the
value of cryptographic PETs (i.e., HE, MPC, and DP) that offer the strongest, formal notions
of privacy, we must also be aware of potential pitfalls in the practical implementation of these
techniques, such as software flaws (238) or violations of model assumptions (239). Technologies
that offer less formal but more widely applicable privacy enhancements (i.e., TEE and FL) can be
useful alternatives in some settings. A promising future direction is to explore a joint use of PETs
to combine their strengths while mitigating their weaknesses, as described in the sidebar titled
Extending Homomorphic Encryption to Collaborative Analysis Settings: Multiparty Homomor-
phic Encryption. Future policies and regulations will have a crucial role to play in translating
the complex privacy properties of emerging tools based on PETs into concrete guidelines for the
biomedical community.

The social impact of PETs involves another key consideration: equity (240). Many studies have
shown that there are inequities in emerging clinical applications of computational tools 241, 242).
Rectifying these issues requires greater data sharing to create more diverse datasets, which in
turn introduces new privacy challenges (243, 244). On the other hand, those whose data are most
needed to improve equity in biomedicine (e.g., underrepresented groups) may also have the most
to lose in the event of a privacy breach (245). Furthermore, certain PETS, such as DP, may dispro-
portionately reduce the accuracy of ML models in populations with limited representation in the
dataset (246). Navigating this complex trade-off between privacy and equity remains an important
challenge.
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We expect trust and transparency to play a crucial role in aligning PETS with the interests of
stakeholders in organizational settings (247). PETs can be viewed as a tool to strengthen trust
between stakeholders by increasing transparency and mitigating various privacy and security risks
that emerge in collaborative partnerships. This perspective contrasts with a common focus in
the PETs community on preventing malicious actors from breaching systems and gaining access
to sensitive data. Integrating contextual values such as trust and human-centered design princi-
ples into PETs could foster the creation of tools that more effectively address the needs of the
biomedical community.

As PETs continue to mature and become more broadly applicable, as demonstrated in this re-
view, there will be a growing need to tailor these techniques to create effective algorithms and
tools that address diverse biomedical workflows. A closer collaboration among PET developers,
biomedical practitioners, policymakers, and patients and study participants could help prioritize
efforts that address the most pressing challenges. Furthermore, software development and de-
ployment tools designed to assist researchers in incorporating PETS into their existing workflows
could help ensure that these techniques are broadly accessible. The combination of advances in
foundational techniques, effective algorithm design, and the establishment of social frameworks
to safeguard the use of these technologies will be key to unlocking the potential of PETs in
biomedical data science.
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