
JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 1

Drynx:
Decentralized, Secure, Verifiable System for Statistical
Queries and Machine Learning on Distributed Datasets

David Froelicher, Juan R. Troncoso-Pastoriza, Senior Member, IEEE, Joao Sa Sousa, and Jean-Pierre Hubaux, Fellow, IEEE

Abstract—Data sharing has become of primary importance in
many domains such as big-data analytics, economics and medical re-
search, but remains difficult to achieve when the data are sensitive. In
fact, sharing personal information requires individuals’ unconditional
consent or is often simply forbidden for privacy and security reasons.
In this paper, we propose Drynx, a decentralized system for privacy-
conscious statistical analysis on distributed datasets. Drynx relies on
a set of computing nodes to enable the computation of statistics such
as standard deviation or extrema, and the training and evaluation of
machine-learning models on sensitive and distributed data. To ensure
data confidentiality and the privacy of the data providers, Drynx
combines interactive protocols, homomorphic encryption, zero-
knowledge proofs of correctness, and differential privacy. It enables
an efficient and decentralized verification of the input data and of
all the system’s computations thus provides auditability in a strong
adversarial model in which no entity has to be individually trusted.
Drynx is highly modular, dynamic and parallelizable. Our evaluation
shows that it enables the training of a logistic regression model on a
dataset (12 features and 600,000 records) distributed among 12 data
providers in less than 2 seconds. The computations are distributed
among 6 computing nodes, and Drynx enables the verification of the
query execution’s correctness in less than 22 seconds.

Index Terms—decentralized system, distributed datasets, privacy,
statistics, machine learning, homomorphic encryption, zero-
knowledge proofs, differential privacy.

I. INTRODUCTION

To produce meaningful results, statistical and machine-learning
analyses often demand large amounts of data. Although data storage
and computation costs have dropped over the years, notably due
to low-cost and powerful cloud-computing solutions, the sharing of
these data is still cumbersome. Massive amounts of data are generated
daily to track individuals’ actions, health, shopping habits, interests,
political and religious views [1], but privacy concerns and ethical/legal
constraints often prohibit or discourage the sharing of personal and
sensitive data. In Europe, the new data-protection regulation, General
Data Protection Regulation (GDPR) [2], effective since May 2018,
requires that (a) the collection and use of personal data can only
be done with the consent of the subject and (b) that the data have
to be anonymized or encrypted before being shared. This leads to
a conundrum, especially in domains such as demography, finance
and health, where data have to be shared, e.g., for enabling research,
but they also need to be protected to ensure individuals’ fundamental
right to privacy. Cross-border data sharing is even more challenging,

This work was partially supported by the grant #2017-201 of the Strategic Focal
Area “Personalized Health and Related Technologies (PHRT)” of the ETH Domain.

D. Froelicher is with the Laboratory for Data Security and DeDiS Laboratory,
Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland, e-mail:
david.froelicher@epfl.ch. Joao Sa Sousa, Juan R. Troncoso-Pastoriza and Jean-
Pierre Hubaux are with the Laboratory for Data Security, Ecole Polytechnique Federale
de Lausanne, 1015 Lausanne, Switzerland, e-mail: name.surname@epfl.ch.

Manuscript received X, 2019; revised X, XXXX.

as the legislations among countries can be heterogeneous, forcing
companies to geographically adapt their own privacy measures.

Multiple examples show that even when data can be shared, a
centralization of the data can have serious consequences, affecting
hundreds of millions of individuals [3], [4]; this was the case with
the Equifax breach [4], in which personal information (including
social-security numbers and credit-card information) of more
than 143 million consumers (about 40% of the US population)
was compromised. Centralized solutions are subject to multiple
threats as the central database, which stores data from multiple
mutually-untrusted sources, constitutes a high-value target for possible
attackers and a single point of failure.

Existing solutions for secure databases [5], [6], [7], [8], [9] usually
add a cryptographic layer on top of the query engine or focus exclu-
sively on the data-release privacy, e.g., by using differential privacy.
However, most of these solutions have a significant performance
overhead or are still fully centralized hence either have a single point
of failure, or do not protect the data during the query execution.

In this context, decentralized data-sharing systems [10], [11], [12],
[13], [14], [15] have raised considerable interest and are key enablers
for privacy-conscious big-data analysis. By distributing the storage and
the computation, thus avoiding single points of failure, these systems
enable data sharing and minimize the risks incurred by centralized solu-
tions. Nevertheless, many of these systems rely on honest-but-curious
or trusted third-party assumptions that might not provide sufficient
guarantees when the data to be shared are highly sensitive, valuable,
influential or private. Other solutions with stronger threat models, e.g.,
UnLynx [16], are limited in the computations they support, e.g., sum
only. Moreover, none of these solutions considers the possibility that
both computing entities and data providers can be malicious.

Improving upon and using some techniques introduced in UnLynx,
we propose Drynx, an operational, decentralized and secure system
that enables queriers to compute statistical functions and to train and
evaluate machine-learning models on data hosted at different sources,
i.e., on distributed datasets. Drynx ensures data confidentiality, data
providers’ (DPs) privacy and protects individuals’ data from potential
inferences stemming from the release of end results, i.e., it ensures
differential privacy. It also provides computation correctness. Finally,
it ensures that strong outliers, either maliciously or erroneously input
byDPs, cannot influence the results beyond a certain limit, and we
denote this by results robustness. These guarantees are ensured in a
strong adversarial model where no entity has to be individually trusted
and a fraction of the system’s entities can be malicious. Drynx relies
on interactive protocols, homomorphic encryption, zero-knowledge
proofs of correctness and distributed differential privacy. It is scalable,
dynamic and modular: Any entity can leave or join the system at
any time and Drynx offers security features or properties that can
be enforced depending on the application, e.g., differential privacy.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 2

In this paper, we make the following contributions:
• We propose Drynx, an efficient, modular and parallel system that

enables privacy-preserving statistical queries and the training and
evaluation of machine-learning regression models on distributed
datasets.

• We present a system that provides data confidentiality and
individuals’ privacy, even in the presence of a strong adversary. It
ensures the correctness of the computations, protects data providers’
privacy and guarantees robustness of query results.

• We propose techniques that enable full and lightweight auditability
of query execution. Drynx relies on a new efficient distributed
solution for storing and verifying proofs of query validity,
computation correctness, and input data ranges. We exemplify and
evalutate the implementation of this solution by using a blockchain.

• We propose and implement an efficient, modular and multi-
functionality query-execution pipeline by
– introducing Collective Tree Obfuscation, a new distributed

protocol that enables a collective and verifiable obfuscation of
encrypted data;

– presenting multiple data-encoding techniques that enable dis-
tributed computations of advanced statistics on homomorphically
encrypted data. We propose new encodings, and improvements
and adaptations of previously introduced private-aggregation
encodings to our framework and security model;

– adapting an existing zero-knowledge scheme for input-range
validation to our security model;

– proposing a new construction of the Key Switching protocol
introduced in UnLynx [16], improving both its performance
and capabilities.

To the best of our knowledge, Drynx is the only operational system that
provides the aforementioned security and privacy guarantees. Drynx
implementation is fully available at www.github.com/ldsec/drynx.

II. RELATED WORK

Centralized systems for privacy-preserving data sharing [8], [17],
[18], [19] and trusted-hardware based solutions [20] usually require
one entity, i.e., a central entity or a hardware provider, to be trusted,
which constitutes a single point of failure. Even though these systems
can be more efficient than their decentralized counterparts, they often
require a centralization or outsourcing of the data storage, which
goes against regulations or is cumbersome to achieve [21] and can
be inappropriate for sensitive data. In Drynx, we avoid these issues by
decentralizing data-storage, computation and correctness verification,
thus efficiently distributing trust.

In order to execute queries and compute statistics on distributed
datasets, multiple decentralized solutions [10], [12], [14], [22], [23],
[24], [25] rely on techniques that have a high expressive power,
such as secret sharing and garbled circuits. These solutions are often
flexible in the computations they offer but usually assume (a) honest-
but-curious computing parties and (b) no collusion or a 2-party model.
Furthermore, they do not provide a way to check the computations
undertaken in the system. Although they might efficiently distribute
trust, their strong honesty assumptions are risky when the data or
the computed statistics are highly sensitive. Bater et al. [10] enable
the evaluation of various SQL queries on datasets hosted by a set of
distrustful data providers, but both the data providers and the com-
puting entity are trusted to follow the protocol. Corrigan-Gibbs and
Boneh [26] propose Prio, a system that ensures privacy as long as one
computing entity out of n is honest, but it only guarantees end results

robustness in the case where the involved parties are all honest-but-
curious. Moreover, Prio does not protect against DPs colluding among
themselves or with the computing nodes. In Drynx, no entity has to be
individually trusted in order to provide both privacy and robustness.

Systems relying on homomorphic encryption [11], [13], [16], [27],
[28], [29] are often limited in the functionalities they offer (e.g., sum
only). They present high-performance overhead in comparison with
their less secure counterparts or still rely on honest-but-curious parties.
In our previous work, we presented UnLynx [16], a decentralized
system that enables the computation of (only) sums on distributed
datasets and ensuresDPs’ privacy and data confidentiality. UnLynx
assumesDPs to be honest-but-curious and, unlike Drynx, it does not
ensure end results robustness. Moreover, UnLynx does not provide
a practical solution for auditability. In this work, we show how to
overcome these limitations and provide a system that enables secure
computations of multiple operations in a stronger threat model.

There are multiple solutions proposed for the problem of training
machine-learning models on distributed data in a privacy-preserving
way [13], [27], [30], [31], [32], [33], [34], [35], [36]. Mohassel
and Zhang [30] propose a two-party solution, SecureML; it enables
the training of specific models, e.g., linear regression. Boura et al.
[31] present a solution that relies on a novel and more flexible
approximation of the logistic regression function but assumes honest-
but-curious parties. Nikolaenko et al. [27] and Juvekar et al. [32]
combine homomorphic encryption and garbled circuits to perform
private ridge-regression and neural-network inference, respectively.
Aono et al. [33] and Kim et al. [13] rely on homomorphic encryption
to train an approximated logistic regression function. Zheng et
al. [36] combine homomorphic encryption and distributed convex
optimization, in their system called Helen, in order to collaboratively
train linear models. Recently, multiple solutions based on federated
learning (relying on differential privacy and edge computing) have
been proposed [24], [37], [38], [39], [40], [41], [42]. These solutions
aim at protecting the resulting model from inference attacks [43], [44].
Some of these works [37], [39] assume a trusted party that holds
the data, trains the machine-learning model, and performs the noise
addition to achieve differential privacy guarantees. Other works [24],
[29], [38], [45], [46] propose solutions for distributed settings in which
the parties exchange differentially private model parameters with the
help of an untrusted server that trains a collective global model. These
approaches are computationally efficient but usually require very high
privacy budgets to obtain a useful collective model (due to the noise
addition); hence it is unclear what privacy protection they achieve in
practice [47]. To this end, some works attempt to obtain more useful
models in the distributed setting by combining differential privacy
with homomorphic encryption [40], [41] or multi-party computation
techniques [42]. However, most of these solutions are specifically
tailored, parameterized and optimized for a given operation, e.g.
gradient descent, and would require a redesign if used for different
operations. Finally, they assume a weaker threat model with honest-
but-curious computing parties and, unlike Drynx, they do not enable
verification of computation correctness and results robustness.

III. BACKGROUND

We introduce Drynx’s main components and two exemplifying use
cases. We describe the cryptographic tools that we use to distribute
trust and workload. We present the blockchains that we use to
implement our solution to ensure Drynx’s correctness and auditability.
Finally, we introduce the notion of differential privacy and verifiable
shuffle, which are at the core of our solution to ensure individuals’
privacy.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 3

A. Use Cases
We illustrate Drynx’s utility in the medical sector, as it is a

paradigmatic example where privacy is paramount and data sharing
is needed. Recently, multiple initiatives have emerged to realize the
promise of personalized medicine and to address the challenges posed
by the increasing digitalization of medical data [48], [49], [50]. In
this context, the ability to share highly sensitive medical data while
protecting patients’ privacy is becoming of primary importance. We
illustrate the possible use of Drynx in two specific settings that
cover most medical data sharing scenarios: (1) Hospital Data Sharing
(HDS), where multiple hospitals enable statistical computations
and the training of machine-learning models across their datasets
of patients (e.g., [50], [51]), and (2) Personal Data Sharing (PDS),
where a medical institute runs studies, e.g., on heart issues, by directly
computing on data collected from people’s wearables (e.g., [52], [53]).

B. ElGamal Homomorphic Encryption
Drynx requires an additively homomorphic cryptosystem; we

choose to rely on the Elliptic Curve ElGamal (ECEG) [54], which
enables an efficient use of zero-knowledge proofs for correctness [55].
However, Drynx’s functionality is not bound to this choice and can
be achieved with other cryptosystems. ECEG relies on the difficulty
of computing a discrete logarithm in a finite field; in this case, an
Elliptic Curve subgroup of Zp, with p a big prime. The encryption
of a message m ∈ Zp is EΩ(m) = (rB, mB+rΩ), where r is a
uniformly-random nonce in Zp,B is a base point on an elliptic curve
G and Ω a public key. The table of symbols is presented in Appendix
A. The additive homomorphic property states that EΩ(αm1+βm2)
= αEΩ(m1) + βEΩ(m2) for any messagesm1 andm2 and for any
scalars α and β. In order to decrypt a ciphertext (rB, mB+rΩ), the
holder of the corresponding private key ω (Ω=ωB) multiplies rB
and ω yielding ω(rB)=rΩ and subtracts this point frommB+rΩ.
The resultmB is then mapped back tom, e.g., by using a hashtable.
Drynx relies on fixed-point representation to encrypt floating values.

C. Zero-Knowledge Proofs
Universally-verifiable zero-knowledge proofs (ZKPs) can be used

to ensure computation integrity and to prove that encrypted data
are within given ranges. In Drynx, we choose to verify computation
integrity by using the proofs for general statements about discrete
logarithms, introduced by Camenisch and Stadler [55]. These
proofs enable a verifier to check that the prover knows the discrete
logarithms y1 and y2 of the public values Y1 =y1B and Y2 =y2B
and that they satisfy a linear equation

A1y1+A2y2 =A, (1)
where A, A1, A2 are public points on G. This is done without
revealing any information about y1 or y2.
The input-range validation is done by relying on the proofs proposed
by Camenisch and Chaabouni [56], with which we can prove that
a secret messagem lies in a given range [0,ul) with u and l integers,
without disclosing m. The prover writes the base-u decomposition
of its secret value m and commits to the u-ary digits by using the
verifier signatures on these digits. The l created commitments prove
to the verifier that m ∈ [0,ul). We present this proof, adapted to
our framework, in Algorithm 1. Finally, both proofs can be made
non-interactive through the Fiat-Shamir heuristic [57].

D. Interactive Protocols
Interactive protocols can be used to distribute the computations

and the trust among multiple computing nodes CNs. In Drynx,

each CNi possesses a private-public key pair (ki, Ki) where ki is
a uniformly-random scalar in Zp andKi=kiB is a point on G. The
CNs’ collective public key isK=

∑#CN
i=1 Ki. The corresponding

secret key k=
∑#CN
i=1 ki is never reconstructed such that a message

encrypted by usingK can be decrypted only with the participation of
all CNs. An attacker would have to compromise all CNs in order
to decrypt a message. As shown in Section V, to produce the intended
results, Drynx protocols require the participation of all the CNs.

E. Blockchains

A blockchain is usually a public, append-only ledger that is
distributively maintained by a set of nodes and serves as an immutable
ledger [58], [59]. Its main applications are in cryptocurrencies [59],
[60] but is also used in other domains, e.g., health care [61]. Data
are bundled into blocks that are validated through the consensus [62],
[63] of the maintaining nodes. Each block contains a pointer (i.e., a
cryptographic hash) to the previous valid block, a timestamp, a nonce,
and application-specific data. The chain of these blocks forms the
blockchain.

F. Differential Privacy

Differential privacy is an approach for privacy-preserving reporting
results on statistical datasets, introduced by Dwork [64]. This
approach guarantees that a given randomized statistic,M(DS)=R,
computed on a dataset DS, behaves similarly when computed
on a neighbor dataset DS′ that differs from DS in exactly one
element. More formally, (ε, δ)-differential privacy [65] is defined
by Pr[M(DS)=R]≤exp(ε)·Pr[M(DS′)=R]+δ, where ε and
δ are privacy parameters: the closer to 0 they are, the higher the
privacy level is. (ε, δ)-differential privacy is often achieved by adding
noise to the output of a function f(DS). This noise can be drawn
from the Laplace distribution with mean 0 and scale ∆f

ε , where
∆f , the sensitivity of the original real valued function f , is defined
by ∆f = maxD,D′ ||f(DS)−f(DS′)||1. Other mechanisms, e.g.,
relying on a Gaussian distribution, have also been proposed [66], [67].

G. Verifiable Shuffles

To randomly select a value from a public list of noise values and to
ensure differential privacy, we rely on a verifiable shuffle [68], [69],
[70], [71]. We implemented and use the verifiable shuffle of ElGamal
pairs, described by Neff [69]. This protocol takes as input a list of
χ ElGamal pairs (C1,i, C2,i) and outputs (C̄1,i, C̄2,i) pairs such that
for all 1≤ i≤χ, (C̄1,i,C̄2,i)=(C1,υ(i)+r′′υ(i)B,C2,υ(i)+r′′υ(i)Ω),
where r′′υ(i) is a re-randomization factor, υ is a permutation and Ω
is a public key. The permutation υ is used to change the order of the
ElGamal pairs and r′′υ(i) is used to modify the value of the ciphertext
encrypting a messagem such that its decryption still outputsm. As
a result, an adversary not knowing the decryption key υ and the r′′υ(i)

is unable to link back any ciphertext (C̄1,i,C̄2,i) with a ciphertext
(C1,i, C2,i). Neff provides a method for proving that such a shuffle
is done correctly, i.e., that there exists a permutation υ and re-
randomization factors r′′i,j such that output = SHUFFLEυ,r′′i,j(input),
without revealing anything about υ or r′′i,j. This is achieved by using
honest-verifier zero-knowledge proofs, introduced by Neff [68], [69].

IV. SYSTEM OVERVIEW

In this section, we describe the system and threat models, before
presenting Drynx’s functionality and security requirements.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 4

A. System Model
The system model is represented in Figure 1. For simplicity, we

describe here the logical roles in Drynx, and in Section VIII we discuss
the fact that a physical node can simultaneously play multiple roles. A

Fig. 1: A querier Q, Data Providers DPi, Computing Nodes CNi
and Verifying Nodes VNi.

querierQ can execute a statistical query and the training and evaluation
of a machine-learning model on distributed datasets held byDPs. The
CNs collectively handle the computations in the system; i.e., from
Q’s perspective, they emulate a central server and provide answers to
her queries. The verifying nodes’ (VNs) role is to provide auditability;
they collectively verify the query execution and immutably store the
corresponding proofs. They enable an auditor, e.g.,Q or an external
entity, to easily verify (audit) the correctness of the query execution.

In Drynx’s typical workflow, the query is defined by the querierQ
and is then broadcast to the CNs andDPs. TheDPs answer with
their encrypted responses that are then collectively aggregated and
processed by the CNs, before the result is sent toQ. We assume that
the used data formats are sufficiently homogeneous among different
DPs and that theDPs are able to interpret the queries, e.g., there is
a common ontology of attributes and the query-language is agreed-on
during system setup.

An exemplifying instantiation of this system model in theHDS
scenario (Section III-A) would feature the CNs as universities
that want to enable researchers (Q) to compute on data held by
multiple hospitals (DPs). VNs can be independent or governmental
institutions ensuring that data protection regulations are respected.

We assume that the system’s topology and public information,
e.g., public keys, are known by all entities. Authentication and
authorization are out of scope of this paper and we briefly discuss
them in Section VIII.

B. Threat Model
We assume a strong threat model:
• Queriers. They are considered malicious as they can try to infer

information about the DPs from the queries end results or by
colluding with other entities in the system.

• Computing Nodes. We consider an Anytrust model [72], which
means that all Drynx’s security and privacy guarantees (Section
IV-D) are ensured, as long as at least one of the CNs is
honest-but-curious (or plain honest).

• Data Providers. TheDPs are considered malicious as they can try
to produce an incorrect answer to a query in order to bias the final
results. They can also collude with other nodes to infer information
about otherDPs or about a query end-results.

• Verifying Nodes. We assume that a threshold number of the VNs
is honest. This threshold, e.g., fh = 2f +1 out of ft = 3f +1,
where ft is the number of VNs, is defined depending on the
consensus algorithm [62], [63] that is used to ensure a correct and
immutable storage of the proofs’ verification results.

C. Functional Requirements

Drynx enables the computation on distributed datasets of any oper-
ation in the family of encodable operations. An encodable operation
can be separated in two parts: theDPs’ local computations and the
collective aggregation. In the collective part, the computations are exe-
cuted on encrypted data and are thus limited by the homomorphism in
the used cryptographic scheme, e.g., additions and/or multiplications.
DPs’ computations are executed locally and are therefore not limited.

Definition 1. An encodable operation f computed amongN DPs
is defined by:

f(r̄)≡π({ρ(r̄i)}Ni=1),
in which the encoding ρ is defined by

ρ(r̄i)≡(Vi,ci),

where Vi =[vi,1,...,vi,d] is a vector of d values computed on a set
of ci = |r̄i| records, where |.| stands for cardinality. r̄ is the set of
all distributed datasets’ records, r̄i is the set of records that belong
to DPi, and π is a polynomial combination of the outputs of the
encodings ρ. The encodings are defined as locally computed functions
on the subsets (r̄i) of each DPi. It is also possible to express an
encodable operation as a recursive function:

fk(r̄)≡π({ρ(r̄i,fk−1(r̄))}Ni=1).

In Drynx, for any specific operation f , each DPi creates an
encoding ρ computed on its set of records r̄i. Then, π is executed
in two parts: the CNs first aggregate all DPs’ encodings outputs
(
∑N
i=1{ρ(r̄i)}) and, if needed, the querier post-processes π on the

aggregated result (e.g, if π involves information-preserving operations
not executable by the CNs under homomorphic encryption).

We give here an instantiation of Definition 1 that enables the compu-
tation of the average, and in Section VII we show how an encod-
ing can be instantiated to enable the computation of: sum, count,
frequency count, average, variance, standard
deviation, cosine similarity, min/max, AND/OR
and set intersection/union, and the training and evalu-
ation of linear and logistic regression models.

For example, ifQwants to compute the average (f) heart rate
over multiple patients across hospitals (HDS (Section III-A)), each
hospital (DPi) answers with the encoding of its (encrypted) local
sum of each patient’s heart rate (h): ρ(r̄i)≡([

∑ci
j=1hi,j],ci). These

encodings are then (homomorphically) added across all hospitals,
and Q can (decrypt and) compute the global average by using π=∑N
i=1vi,1/

∑N
i=1ci. We remark here that whereas ρ and π are applica-

tion dependent, the workflow is common to all the possible operations.
Finally, in Drynx, an auditor can efficiently audit a query execution.

Moreover, the proofs required for auditability are produced such that
their creation does not affect the query runtime.

D. Security Requirements

Drynx must ensure:
• Data confidentiality. The data input by the DPs have to remain

confidential at any time. OnlyQ is able to see the query answer.
• DPs’ privacy. No entity is able to infer information about one sin-

gleDP or about any individual storing his data in aDP ’s database.
• Query Execution Correctness. We consider the query execution

to be correct when both results robustness and computation
correctness requirements are met:
– Results robustness. The query results are protected against strong

outliers, either maliciously or erroneously input by theDPs.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 5

– Computation correctness. Any computation undertaken by the
CNs is correctly executed.

V. DRYNX DESIGN

To overcome the limitations in existing works and meet the require-
ments presented in the previous section, we propose a novel system
model in which we enable query auditability by introducingVNs. Ad-
ditionally, Drynx provides multiple functionalities in a stronger threat
model by relying onDPs that encode locally computed results proven
to be within a certain range. It limits the trust inDPs by controlling
that their results are in these pre-defined ranges. We propose a system
that remains generic and practical while operating in a threat model
stronger than existing works. We discuss now the design of this system.

In Drynx’s Security Design (Section V-A), we show how we build
Drynx to meet all its security requirements:
• In Section V-A1, we introduce a simple query-execution pipeline

enabling Drynx’s functionalities and protecting data confidentiality.
• In Section V-A2, we build upon the previously introduced

query-execution pipeline and explain how to ensureDP s’ privacy
by introducing the new concept of a neutral encoding. This enables
a DP to privately choose whether to answer a query. We also
explain how Drynx handles bit-wise operations and maintains
DPs’ privacy. Finally, we introduce distributed differential privacy
that is used to ensure that no entity infers information about a
singleDP or individual from the query end results.

• In Section V-A3, we show how we provide auditability in an
efficient way by relying on a set of VNs. We describe how Drynx
ensures results robustness by leveraging on range proofs and how
all Drynx’s computations can be verified by relying on proofs of
correctness.

In Drynx’s Optimized Design (Section V-B), we discuss how to
optimize Drynx’s performance:
• In Section V-B1, we present Drynx’s full query-execution pipeline.

We show how multiple parts of the query execution and verification
can be run concurrently thus optimize Drynx’s runtime.

• In Section V-B2, we introduce a tradeoff between security and
performance by enabling a probabilistic verification of the query
execution.

A. Drynx Security Design
We present Drynx core security architecture.

1) Data Confidentiality: First, we introduce a confidential
distributed data-sharing system (Figure 2) that can run the same
operations as Drynx, but only meets one of the security requirements:
data confidentiality.

We describe the query execution protocol, and sketch the proof
of confidentiality for this system. Afterwards, we describe how to
enhance this construction to meet Drynx’s other security requirements
without breaking data confidentiality.
1) Initialization. Each CNi, DPi and Qi generates its own

private-public key-pair (ki,Ki). The CNs’ public keys are then
summed up in order to createK, the CNs’ public collective key
that is used to encrypt all the processed data.

2) Query. Q formulates the query that is broadcast in clear
through the CNs to the DPs. Although the querier could
directly communicate with the DPs, our choice simplifies the
communication scheme and the synchronisation inside the system,
as the CNs have to know the query and receive theDPs inputs
to perform the computations in the remaining steps. The query

Fig. 2: Confidential System Query Execution.

defines the operation, the attributes on which the operation is
computed, the participating DPs and (optionally) the filtering
conditions. Drynx works independently of the query language. We
illustrate its use with a SQL-like query to compute the average
heart rate among patients for which data are held by n DPs:
SELECT average heart_rate ON DP1, ..., DPn
WHERE patient_state = ′hypertensive′

3) Retrieval & Encoding. TheDPs compute their local answer by
following ρwhich is defined in the operation encoding (Definition
1). For this purpose, they first locally retrieve the corresponding
data.

4) Encryption. The DPs encrypt their encoded answer under K
and send the corresponding ciphertexts back to the CNs.

5) Collective Tree Aggregation (CTA). The CNs collectively
aggregate all DPs’ responses by executing a CTA protocol
relying on the Collective Aggregation protocol defined in UnLynx
[16]. The CNs are organized into a tree structure such that each
CN waits to receive the aggregation results from its children and
sums them up before passing the result on to its own parent.

6) Collective Tree Key Switching (CTKS). The CNs collectively
convert the aggregated result, encrypted under K, to the same
result encrypted underQ’s public keyK′, without ever decrypting.
This protocol (Protocol 1) is a new construction of the Key
Switching proposed in UnLynx [16]. Conceptually, each CN
partially decryptsm (i.e., the term−(C1)ki in the computation
in step 2) and re-encrypts it withQ’s public keyK′ (i.e., the term
+αiK

′ in step 2).

Protocol 1 Collective Tree Key Switching (CTKS)
Input. EK(m) =(C1, C2)=(rB,mB+rK), K′

Output. EK′(m) =(C′1,C
′
2)=(r′B,mB+r′K′)

Protocol.
1. The rootCN1 sendsC1 down the tree to allCNs.
2. Each CNi generates a secret uniformly-random nonce αi and

computeswi,1 =αiB andwi,2 =−(C1)ki+αiK
′

3. The CNs collectively aggregate (i.e., using CTA) all the wi,1 and
wi,2.

4. CN1 finally computes (C′1,C
′
2) = (

∑
wi,1,C2 +

∑
wi,2) =

(r′B,mB+r′K′) where r′=
∑
αi.

We improve the efficiency of CTKS by changing the way the
ciphertexts are transformed and by organizing the CNs in a tree
structure, thus reducing its execution time. In this structure, mul-
tiple CNs can perform their local operations (3 scalar multiplica-
tions and 1 addition) in parallel, and the CTA requires #CN−1
aggregations and communications between the nodes. We show
the computational complexity of all Drynx protocols in Table II.

7) Decryption.Q decrypts and decodes the query results.

Security Arguments. We show that, as long as one CN is honest, an

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 6

adversary who controls the remaining CNs, DPs and Q cannot
break data confidentiality. Without loss of generality, we assume
that at least one DP is honest, as only in this case there is data to
protect from the adversary. We sketch the proof by relying on the
real/ideal simulation paradigm [73] and show that an adversary cannot
distinguish a “real” world experiment, in which the adversary is given
“real” data (sent by honestDPs), and an “ideal” world experiment,
in which the adversary is given data (e.g., random) generated by a
simulator. It can be shown that theDPs send encrypted data that are
never decrypted before being aggregated and re-encrypted (CTKS)
underQ’s public key. Therefore, due to the cryptosystem’s semantic
security, the adversary cannot distinguish between a simulation and a
real experiment. It can be seen that data confidentiality is thus ensured
during end-to-end query execution:

In Retrieval & Encoding, theDPs operate only on their local data
and no external data is seen by any malicious party. In Encryption,
the DPs encrypt their responses with K and these responses are
aggregated, still under encryption, inCTA. The (summed) ciphertexts
cannot be decrypted unless all CNs collude, which is not possible as
they follow an Anytrust model. Finally, in CTKS (Protocol 1), a ci-
phertext is switched fromK toQ’s public key such thatQ can decrypt:
• in CTKS Steps: 1-3. The ciphertext is encrypted under K and

thus cannot be decrypted without the collusion of all CNs.
• in CTKS Step: 4. The ciphertext is always

(C̃1, C̃2) = (r̃B, mB + r̃K′) where r̃ =
∑t
i=0 αi and

0≤ t≤#CN and can only be decrypted if the t CNs collude
withQ, who is the intended recipient of the message.

2) DPs’ Privacy: Drynx protectsDP s’ and individuals’ privacy
by ensuring that (a) each DP can privately decide whether to
answer a query, (b) only the result of the operation, as defined by
the operation encoding, is disclosed toQ, and (c) no entity can infer
information about a singleDP or individual.

a) Neutral Response: If a DP determines that a query can
jeopardize its privacy, it can choose to not respond, or answer with
a neutral response, thus hiding its refusal to participate in the query
without distorting the query results. For this purpose we define
neutral response:

Definition 2. A DPi sends a neutral response by defining its
response encoding (Definition 1) by ρ(r̄i)≡(O,0), where O is the
neutral vector such that W+O=W with W being any encoding
vector; ci=0 asDPi computes on 0 records.

In Section VII, we describe how a neutral response can be
generated for each listed encoding.

Security Arguments. ADP not answering a query would suggest
(leak) to other entities that this query is too sensitive for it.DPs’ re-
sponses are always encrypted and, due to the indistinguishability prop-
erty of the underlying cryptosystem, a neutral response is indistinguish-
able from a non-neutral one, thus effectively hiding theDP ’s refusal.

b) Privacy-Preserving Bit-wise Operations: In Drynx,
DPs’ responses are summed through the available additive
homomorphism; if these responses are binary, the result of the sum
can leak to Q more than the operation result. For example, when
an OR operation is executed over a set of DPs, Q should only
know if the answer is true (1) or false (0). Nevertheless, if the
DPs’ responses are naively summed, Q gets the number of DPs
that answered ‘1’ and ‘0’. To overcome this issue, we propose the
Collective Tree Obfuscation (CTO) protocol, detailed in Protocol
2. For bit-wise operations, CTO is run between steps CTA and

CTKS of the query execution. In CTO, the CNs collectively
obfuscate a ciphertext by multiplying it with a random secret.
CTO enables privacy-preserving bit-wise operations in Drynx as a

‘1’ is obfuscated to a random value whereas ‘0’ is preserved. To know
the result of the operation,Q only checks if the final value is ‘0’ or not.

Protocol 2 Collective Tree Obfuscation (CTO)
Input. EK(m) =(C1, C2)=(rB,mB+rK)

Output. EK(sm) = (srB,smB+srK)
Protocol.

1. RootCN1 sends (C1, C2) down the tree to allCNs.
2. EachCNi generates a secret uniformly random nonce si and computes

(Ĉi,1,Ĉi,2)=si ·(C1, C2)
3. TheCNs collectively aggregate (i.e., usingCTA) all the (Ĉi,1,Ĉi,2).
4. CN1 obtains EK(sm) = s·(C1, C2) where s=

∑
si.

Security Arguments. Protocol 2 does not hinder the confidentiality
of m and indeed obliviously and statistically obfuscates m. The
confidentiality relies on the cryptosystem’s semantic security, asm re-
mains encrypted during the whole protocol execution. A multiplicative
blinding ofm inZp is defined by s·m, where s is a secret scalar value
inZp. The output of theCTO protocol is the encryption of (

∑
si)·m.

We can rewrite (
∑
si)·mby separating the contributions of the honest

CNs h (at least one CN due to our Anytrust model assumption)
and malicious CNs e: (

∑
i∈hsi+

∑
i∈esi) ·m= (

∑
i∈hsi) ·m+

(
∑
i∈esi)·m. Even if an adversary knows (

∑
i∈esi)·m, the other

term (
∑
i∈hsi)·m ensures a multiplicative blinding ofm in Zp.

c) Distributed Differential Privacy: Drynx relies on the
Collective Differential Privacy (CDP) protocol, introduced in
Unlynx [16], to ensure differential privacy, and prevent information
inference about someDPs and/or individuals from the query results.
For completeness, we briefly present the CDP (Protocol 3) and refer
to [16] for more details. The choice of parameters depends on the
application’s privacy policy and is out of the scope of this paper.

Protocol 3 Collective Differential Privacy (CDP)
Input. ε (defined in Section III-F), ∆f : query sensitivity, and θ: quanta
Output. EK(n̂1,...,n̂̃l)

Initialization
1. The distribution LD=Laplace(0,∆f/ε) is publicly agreed on.
2. LD is publicly sampled, using the quanta θ, to a list of l̃ noise values
ñ1,...,ñ̃l.

Protocol.
1. Each CN privately and sequentially shuffles ñ1, ..., ñ̃l, producing

EK(n̂1,...,n̂̃l).
2. First elements of EK(n̂1,...,n̂̃l) are used as oblivious noise values and

added to the query result.

Security Arguments. We observe that the list of noise values is
verifiably generated from the differential privacy parameters and that
all the CNs privately shuffle the values. This protocol’s security is
analyzed in details in UnLynx [16].

3) Query Execution Correctness: We first describe how Drynx
provides auditability by enabling an efficient verification of the query
execution correctness. The latter is achieved by guaranteeing results
robustness and computation correctness. The first is ensured by
limiting theDPs’ values to be in a specific range (by means of range
proofs) and the second by using ZKPs for all theCNs computations.

a) Auditability: To provide an efficient solution for the query
verification, Drynx relies on a set of VNs that verify the query
correctness in parallel to its execution and without affecting its
runtime. After each operation,Q, the CNs andDPs create proofs

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 7

of correct computations or value range that they sign with their private
key (to provide authentication). Their signed proofs are sent to all the
VNs. This enables an efficient query execution as the proof creation
and verification are executed independently from it.

In order to implement this solution, we can rely on the distributed
architecture of the VNs and can provide integrity and immutability
by using a blockchain, i.e., the proof blockchain. This enables the
public and immutable storage of both the query and its verification
results. Moreover, it enables an efficient and lightweight verification
of the query correctness. An auditor, e.g.,Q, has only to request the
block corresponding to the query, to verify the VNs signatures and
to check the query verification results. We detail this in Protocol 4
and show an example of the proof blockchain in Figure 3.

Protocol 4 Query Verification
Query
Q:

1. Q signs and broadcasts the query to the VNs.
VNs:

1. Each VN verifiesQ’s signature.
2. Each VN deterministically derives the list of expected proofs for

the query. It initializes a query-proofs map that stores the result of
the verification for each proof: true, false, not received
(before a predefined timeout).

Query Execution.
DP orCN:

1. A DP or CN executes an operation, then creates, signs and sends
the corresponding proof to the VNs.

VNs:
1. Each VN verifies the prover’s signature.
2. Each VN verifies the proof and stores the result in its query-proofs map.
3. Each VN stores the proof in its local (key, value)-database. The key

is uniquely and deterministically derived from the query, the prover’s
ID and the proof type.

End of Query Execution (or timeout).
VNs:

1. One of the VNs (e.g., chosen in a round-robin fashion) gathers all
VNs’ query-proofs maps.

2. The same VN creates a block containing the Query Unique ID, the
Query and all the query-proofs maps.

3. The block is sent around such that each VN checks that its
query-proofs map and the query are correctly saved. If this is the case,
the VN signs the block.

4. The VNs run a consensus algorithm such that a block signed by a
threshold fh of VNs is consistently added to the blockchain. Each
VN keeps a local copy of the blockchain.

Fig. 3: Proof blockchain. Each block contains Query ID and content,
and each VN’s query-proofs map. RP stands for range proof.

Security Arguments. If an entity trusts a threshold fh of the VNs, it
can verify the query correct execution by checking the corresponding
block in the proof blockchain. The verifier can check that fh nodes
agree on the correctness of the proofs. A block is created for every
query, even if the proofs are wrong, thus enabling any entity to
determine which parties were involved in incorrectly computed
queries. Otherwise, as all the proofs are universally verifiable and

stored by allVNs, an auditor, not trusting fh of theVNs, can request
the proofs from a subset of them and check the proofs by itself.

b) Results Robustness: If the querier defines a query with
range boundaries on the DPs’ values, the DPs are requested
to create proofs of range by following the algorithm detailed in
Algorithm 1. This algorithm is built by adapting the [0,ul)-range
proof scheme proposed by Camenisch et al. [56] to the Anytrust
model. In this algorithm, the prover, i.e., DP , writes its secret
value m in base-u and commits to the u-ary digits by using the
CNis’ signatures on these digits (Ai,b in Algorithm 1). The l created
commitments complete the proof. To adapt this algorithm to the
Anytrust model, theDP must compute multiple proof elements, i.e.,
c, Vi,j, ai,j, by combining all CNs’ signatures, i.e., Zi, Ai,b. This
ensures that the DP uses at least one CN’s signature for which it
does not know the underlying secret. The same transformation in
[56] can be applied to generalize the proof to any range [bl,bu).

Security Arguments. Both the correctness and the zero-knowledge
property of the range proof are proven by Camenisch et al. [56].

Algorithm 1 Input Range Validation in Anytrust Model
ADP proves that its secretm∈ [0,ul), where u and l are two integers.C2 =
mB+rΩ corresponds to the right part of EΩ(m)=(C1,C2). e() is a pairing
function (bilinear map [56]) on an Elliptic Curve andH is a hash function.
Initialization:

1: Each CNi picks a random xi ∈ Zp and computes Zi ← Bxi,
Ai,b←B(xi+b)

−1 ∀b∈Zu.
2: All Zi andAi,b are made public.

Proof Creation:
1: DP computes value c=H(B,C2,

∑
iZi) and

2: for each j∈Zl such thatm=
∑
jmju

j do
3: Pick three uniformly-random values sj,tj,vj∈Zp
4: for each computing nodeCNi do
5: Vi,j=Ai,mjvj
6: ai,j←−sj ·e(Vi,j,B)+tj ·e(B,B)
7: end for
8: zvj←tj−vjc (mod p) and zmj←sj−mjc (mod p)
9: end for

10: DP picks n ∈ Zp and computes zr = n − rc (mod p) and
D←

∑
jBu

jsj+Ωn
11: DP publishes proof ={C2,c,zr,zvj ,zmj ,D,ai,j,Vi,j} ∀j∈Zl and
∀i∈{1,...,#CN}.

Proof Verification:
1: Any entity can check that:
D = C2c + Ωzr +

∑
jBu

jzmj and ai,j = e(Vi,j,Zi)c − zmj ·
e(Vi,j,B)+zvj ·e(B,B), ∀j∈Zl and ∀i∈{1,...,#CN}.

These proofs are universally verifiable and sound in the Anytrust
model. The latter comes from the fact that the elements depending
on the CNs’ secrets xi are computed as a combination of all their
public signatures. As at least one CNi is honest-but-curious, one
of the xi is unknown (not revealed) to theDP (prover).

c) Computation Correctness: In order to ensure the
correctness of the query execution, each computation executed by
a CN has to be proven correct.
• Collective Tree Aggregation. TheCNs provide to-be-aggregated in-

put ciphertexts and the resulting ciphertexts that constitute the ZKP.
• Collective Tree Obfuscation. The CNs produce an obfuscation

proof by relying on Expression (1) in Section III-C. Each CNi
multipliesC by si to obtain the obfuscated ciphertext (C′1,C

′
2) with

(a) C′1 =siC1 and (b) C′2 =siC2. For both equations, y1 =si is
the discrete logarithm; we have the public valuesA=C′1,A1 =C1

for (a) andA=C′2,A1 =C2 for (b), which constitute the proof.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 8

• Collective Differential Privacy. In this protocol, each CN
sequentially executes a Neff shuffle and produces the corresponding
ZKP of correctness described in Section III-G. This proof basically
contains the input and output lists, the public key encrypting the
ciphertexts, and commitment values.

• Collective Tree Key Switching. The CNs create the ZKP by
applying Equation (1) in Section III-C, in which we have y1 =ki,
y2 =αi, the discrete logarithms of kiB=Ki andαiB, respectively.
All pointsKi, αiB,A=wi,2,A1 =−rB andA2 =K′ are made
public and do not leak any information about the underlying secrets.

Security Arguments. We rely on proofs that are universally verifiable
and zero-knowledge. They do not affect data confidentiality beyond
what can be inferred from the proven facts themselves.

B. Drynx Optimized Design

We present Drynx’s final query execution pipeline, before
describing how the query verification’s performance can be optimized.

1) Full Query Execution Pipeline: We show Drynx’s full
pipeline in Figure 4. Query execution and verification are executed
concurrently and multiple steps of the query execution can be
executed in parallel. The CNs aggregate each DP ’s response in
CTA, as soon as they receive it. The noise generated from the CDP
has to be added after all the results have been aggregated. However, if
the differential privacy parameters are predefined, this protocol can be
executed independently from the other steps or even pre-computed.

Fig. 4: Drynx’s complete optimized query-execution. Arrows
represent causal links. Steps without direct links can be executed
independently and dashed steps are optional.

2) Probabilistic Query Verification: To improve the
performance of the query verification, we enable a probabilistic
verification of the proofs by the VNs. We show that this strategy
still enables a verifier to detect a misbehaving entity with a high
probability, yet considerably improves performance (see Section
IX). A proof for a specific operation (e.g., CTKS for a set of
ciphertexts S) can have multiple sub-proofs (e.g., CTKS for one
ciphertext C∈S). One proof is considered incorrect if one or more
of the sub-proofs is incorrect. We introduce the two thresholds T
and Tsub that define the probability of verifying a single proof and
a sub-proof, respectively. We modify the VNs’ operations in step
2 of the Query Execution described in Protocol 4, by adding this
probabilistic verification based on T and Tsub. Each VN stores all
the proof it receives. It then generates a random value r∈ [0,1]; if
r <T , it starts the probabilistic verification of the sub-proofs. For
each sub-proof, the same method is applied, using Tsub.

Security Arguments. The probabilistic verification does not
necessarily compromise the security level of the system, given that
the verification of each proof is redundantly done by each VN . A

proof is verified with a probability pver = 1−(1−T)NVN , where
NVN is the number of VNs, and a sub-proof with a probability
pversub = 1−((1−T)+T(1−Tsub))NVN . The probability that a
proof or a sub-proof is verified by at least fh nodes is

Pfh =
NVN∑
i=fh

(
NVN
i

)
pi(1−p)NVN−i,

where p is either pver (for a proof) or pversub (for a sub-proof).
For example, if NVN =7, T =1 and Tsub=0.3, all the proofs are
at least partially verified and each sub-proof is verified by fh = 5
VNs with Pfh = 98.48%. Each sub-proof is thus verified by at
least fh of the VNs with a high probability. Due to the honesty
assumption, a sub-proof is at least verified by one honest VN with
a high probability. Moreover, the thresholds T and Tsub can be set to
arbitrarily reduce the probability that one sub-proof is not verified by
at least one honest node. Therefore, if all the VNs that participated
in the verification agree on the result, the auditor knows the proof
is correct, otherwise it can either choose to only trust some of the
VNs or fetch all proofs and verify them itself, as all the proofs are
universally verifiable. For example, an auditor can choose to verify
only the proofs that were not checked by any of the VNs she trusts.

VI. SECURITY ANALYSIS

We employed only existing, peer-reviewed cryptographic schemes
and discussed the composability of the security of the different blocks
in previous sections. We corroborate these arguments with a brief
summary of the security analysis.
• Data confidentiality. In Section V-A1, we sketched the proof for

confidentiality in our simplified system and discussed in Section
V-A how further design choices do not hinder confidentiality. In
summary, data confidentiality is ensured as the data are always
encrypted and no operation, e.g., ZKP creation, affects it.

• DPs’ privacy. DPs can privately decide whether to answer
a query, and differential privacy is ensured for the DPs and
individuals, which protects them from potential inferences
stemming from the release of end results. The latter is ensured in
Drynx by blindly adding noise, sampled from a specific distribution,
to the query end results. As described in Section V-A2, this noise
can be verified to be from a specific distribution (e.g., Laplacian)
and no entity knows which noise value is added.

• Results robustness. This is ensured as all DPs’ values can be
verified to be within a certain range and all CNs’ computations
must be proven correct, as depicted in Section V-A3. By enforcing
the generation of range proofs byDPs, we protect against strong
outliers, maliciously or erroneously input, which can significantly
distort the query results.DPs can still input incorrect values, but
their influence on the final result is limited. We give an intuition on
how robust a computation is against such behavior in Section IX-B.

• Computation correctness. The proofs of correct computations
(Section V-A3) ensure that the DPs’ answers are correctly
aggregated (CTA) and that the remaining steps (CTO, CTKS,
CDP) are correctly executed.

VII. ENCODINGS

We present a set of statistical computations that can be executed
in Drynx. We then explain how to instantiate encodings (Definition 1)
for the training of both linear and logistic regression machine-learning
models. We adapt the logistic regression solution, proposed by Aono
et al. [33], to our framework, thus enabling Q to train this model
in a verifiable and privacy-preserving way, even in the presence

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 9

of a strong adversary. Some of the encodings are adapted from the
Corrigan-Gibbs and Boneh [26] system and improved upon.

Numerical Statistics. Table I lists a set of simple statistics that can
be performed with Drynx. The sum, mean, variance, std.
deviation, cosine similarity (cosim) and R2

operations are executed by requiring the DPs to send the result
of their local and partial statistic computation. As an example, for
variance, each DPi locally computes the sum of the values
(records) hj that match the query, (∑ci

j=1hj) where ci isDPi’s dataset
cardinality, the square of those same values (∑ci

j=1h
2
j) and generates

ρ(r̄i) =([
∑ci
j=1 hj,

∑ci
j=1 h

2
j],ci). These values are independently

aggregated among allDPs and the overall variance is computed by
Q, after decryption, using the corresponding π (defined in Table I). For
the frequency count, DPs are expected to send the vector
Vi filled with the number of occurrences (fc) for specific values. The
cosine similarity is computed between two vectors φ and
φ̄, where eachDPi holds a subset of the coefficients of each vector.

Operat. (f) π (onN DPs) ρ
(Vi=[vi,1,...,vi,d],ci)

sum ∑N
i=1vi,1 ([∑ci

j=1hj], ci)

mean
∑N
i=1vi,1∑N
i=1ci

([∑ci
j=1hj], ci)

variance σ2 =
∑N
i=1vi,2∑N
i=1ci

−(
∑N
i=1vi,1∑N
i=1ci

)2 ([∑ci
j=1hj,

∑ci
j=1h

2
j],

std. dev. σ=
√
σ2 ci)

AND/OR
∑N
i=1vi,1

?
=0 ([Rj],ci) or ([bj], ci)

min/max l/rm6=0(∑N
i=1vi,1,..., ([Rj,1, ..., Rj,d], ci)∑N

i=1vi,d) or ([bj,1, ..., bj,d], ci)
frequ. count ∑N

i=1vi,1,...,
∑N
i=1vi,d ([fcj,1, ..., fcj,d], ci)

set int/un ∑N
i=1vi,1,...,

∑N
i=1vi,d ([Rj,1, ..., Rj,d], ci)

or ([bj,1, ..., bj,d], ci)
cosim s(φ,φ)=

∑N
i=1vi,1√∑N

i=1vi,2

√∑N
i=1vi,3

([∑ci
j=1φjφj,

∑ci
j=1φ

2
j ,∑ci

j=1φ
2
j], ci)

R2 1−
∑N
i=1vi,3
σ2

([∑ci
j=1yj,

∑ci
j=1y

2
j∑ci

j=1(yj−ŷj)2], ci)

TABLE I: Example set of encoding instantiations. All DPs
encodings (ρ) are then aggregated such thatQ computes π at the end.

Bit-Wise Statistics. As depicted in Table I, bit-wise operations
can be executed in two ways: EachDPi either (1) sends a random
encrypted integerR or (2) sends an encrypted bit b. For (1), in the OR
(resp. AND) case, eachDPi is requested to send an encrypted integer
EK(Ri), where Ri = 0 if the input is 0 (resp. 1), and a random
positive integer otherwise. The OR (resp. AND) expression is true
(resp. false) if the sum

∑
Ri>0.Q obtains the final result by testing

if the output is 0 or not. The result of this operation can be erroneous
if
∑
Ri≡ 0 mod(#G), or in other words, if the order #G of the

Elliptic Curve subgroup divides the sum of allDPs’ random values.
This happens only with a probability smaller than 1/(#G−1) (proof
in Appendix B). This probability is close to 0 as #G is much bigger
than the decryptable plaintext values, and can be further reduced by
repeating the query. Alternatively, in (2) eachDPi has to send bi,j=0
or bi,j=1 encrypted value. This eliminates the error probability but re-
quires more computations and proofs of correctness, as theDPs have
to prove that their values are in {0,1}, and a CTO protocol (Section
V-A2b) has to be executed to preserve privacy. The min (resp.
max) is computed by applying the or operation element-wise
among vectors Vi. Each DPi computes its local min (resp. max)
mDPi in a specified range, e.g., [0:100], which is represented by Vi=
[bi,0,...,bi,100]. Each bi,j>mDPi (resp. bi,j<mDPi) is encoded with
a ‘1’ (or random) and a ‘0’ otherwise. The min (resp. max) across

allDPs corresponds to the leftmost (resp. rightmost) position with
a ‘1’ in the vector resulting from the OR operation. Similarly, the
set intersection (resp. union) is computed by using
the AND (resp. OR) operation element-wise on the vectors Vi.

Regression Models.
Linear Regressions. We assume a dataset distributed over the
DPs with D features x1, ..., xD and a label value y such that
y ≈ c0 + c1×x1 + c2×x2 + ...+ cD×xD. Drynx computes the
least-squares linear fit over all theDPs by building a system ofD+1
equations that Q can use in order to compute the linear regression
coefficients c0,c1,c2,...,cD: n ∑

xµ,1 ... ∑
xµ,D∑

xµ,1
∑
x2µ,1 ... ∑

xµ,1xµ,D

...∑
xµ,D

∑
xµ,1xµ,D ... ∑

x2µ,D

c0
c1
...
cD

≈
 ∑

yµ∑
yµxµ,1

...∑
yµxµ,D

 (2)

where all the sums are between µ = 1 and µ =
∑N
i=1 ci. Each

DPi sends
∑ci
j=1 xj,η,

∑ci
j=1 xj,ηxj,ζ,

∑ci
j=1 yj,

∑ci
j=1 yjxj,η,

∀η,ζ∈{1,2,...,D}, η 6=ζ.
Logistic Regressions. We consider again a dataset of Nda records
(distributed among theDPs) with a dimensionD where each record
x(µ) = (1,x

(µ)
1 ,···,x(µ)

D)∈RD consists of D features and an offset
term of 1, and is associated with a label y(µ)∈{0,1}. The original
logistic regression cost function is

J(θ)= 1
Nda

∑Nda
µ=1

[
−y(µ)log(hθ(x

(µ)))−(1−y(µ))log(1−hθ(x(µ)))
]
+lrθ,

where hθ(x) = 1/(1+exp(
∑D
η=0θηxη)) and lrθ = λ

2Nda

∑D
η=1θ

2
η, λ

is the L2-regularization parameter. J(θ) can be approximated by a
linear function

Ja(θ)=

[
1

Nda

∑k
τ=1

∑D
r1,...,rτ=0aτ(θrτ ···θrτ)Aτ,r1,...,rτ−a0

]
+LRθ,

by using the fact that log(1
1+exp(x)

)≈
∑k
τ=0aτx

τ , where a0,a1,..., ak
can be chosen as the k+1 first coefficients of the Taylor expansion
of log(1

1+exp(x)
), or as the coefficients of the quadratic approximation

that minimizes the area between the original function and its
approximation. TheAτ,r1,···,rτ coefficients are defined by
Aτ,r1,···,rτ=

∑Nda
µ=1a

(µ)
τ,r1,···,rτ=

∑Nda
µ=1 (y(µ)−y(µ)(−1)τ−1)(x(µ)r1

···x(µ)rτ
),

where the a(µ)
τ,r1,···,rτ are computed and encrypted by theDPs before

being collectively aggregated by the CNs.
Neutral Response. A neutral response for and and set

intersection is O = [1, ...,1], and O = [0, ...,0] for other
operations.

Optimized and Iterative Encoding Drynx can also be used in
order to execute iterative processes, e.g., a k-means algorithm. In this
case, each iteration can simply be mapped to a query sent to the system.
An iterative process can also be used in order to optimize existing
encodings, such as the min and max. In their basic versions, these
encodings rely on a d-bit vector in which each bit represents a value
in a predefined range of size d = |bu− bl|. This means that each
DP sends d ciphertexts. This process can be optimized by using a
binary-search iterative process as depicted in Protocol 5. In the Range
Reduction step, each query only requires one ciphertext perDP and
reduces by half the range of possible answers. This step is repeated
until this range is reduced to a predefined sizeEL. It must be noted
that the execution of other iterative processes would work in a similar
way: For example, for a k-means algorithm [74], Q performs one
iteration by executing one query that includes the centroids in clear; the
DPs then assign their points to the closest centroid before aggregating
their points by cluster; then, the same operation is repeated among
allDPs by using Drynx typical query workflow andQ computes the
new centroids. As in Protocol 5 and as described below, this algorithm
leaks the intermediate results. We do not address the problem of hiding

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 10

the intermediate results, e.g, by using differential privacy, in this work.

Protocol 5 Iterative Process (max example)

Input. Query = max in ra=[bl,bu] andEL
Output. Max value
Range Reduction:

1: while |ra|>EL do
2: Q sends SELECT OR (∃v∈ [b (bl+bu)

2
c,bu]) ON DP1,..,DPn

3: if query returns true then
4: ra=[b (bl+bu)

2
c,bu]

5: else
6: ra=[bl,d (bl+bu)

2
e]

7: end if
8: end while

Final Step:
1: Q sends SELECT MAX [bl,bu] ON DP1,...,DPn

Security Arguments. For all encoding and in each query,Q learns
the elements of V (aggregated over allDPs) and the (approximate)
number of samples considered c, as defined by encoding.

For the iterative process, in the Range Reduction, the DPs’
answers remain confidential, but the range is sent in clear in each
query thus revealed to other entities.Q controls the size of the range
of possible values that is leaked by defining an entropy limitEL. In
the final step, the max query is privately executed on the remaining
range. This provides a tradeoff between performance and privacy
(that we analyze in Section IX). The number of ciphertexts is lowered
to n = g+ d d2g e, g = blog2(d

EL)c, which reduces the amount of
computations and proofs by a factor dn . For example, ifQ wants to
know the DPs’ minimum value in [0,1000) with EL= 100, the
workload is reduced by a factor of 7.8 and the query leaks a range
of 100 possible minimum values.

VIII. DISCUSSION AND EXTENSIONS

We illustrate multiple extensions for Drynx by relying on our use
cases,HDS and PDS (Section III-A).

Modularity. Drynx is highly modular and some of its security
features can be enabled or disabled, depending on the application.
For example, if results robustness is not required, input-range
validation can be omitted without hindering Drynx’s execution and
the remaining security guarantees are preserved. The same applies
forDPs’ privacy features, e.g., differential privacy.

For example, inHDS, each hospital (orDP) locally executes the
query on multiple patient records and the range proofs can be omitted
if the range of possible values is too broad or if the hospital is trusted
to input correct values. Otherwise, the range boundaries have to be set
accordingly. In this case, the querier has to use her knowledge on the
attributes involved (e.g., age is between 0 and 150) and the information
she has on the DPs’ data (e.g., DPs have a maximum of X data
samples) to define the ranges. InPDS, the ranges for the input values
can be used to enforce tighter bounds (e.g., heart rate can only take
values in [40,100] beats-per-minute) as eachDP has one data record.

Drynx also enables the collective protection of data at rest by having
DPs locally encrypt their data with theCNs’ collective keyK. This
limits the flexibility of the system asDPs are then required to pre-
compute all necessary inputs (e.g., the square root of the values to en-
able the computation of the variance) and the range proofs before
entering the encrypted data in their databases. It also requires a fixed
set of CNs, as only they can operate with that pre-encrypted data.

As mentioned before, Drynx’s primary goal is to guarantee
DPs’ privacy and still enable the queriers to obtain the results of
computations performed over multiple databases. For this, Drynx

enables optional security and privacy features, such as differential
privacy. These features can be enabled or disabled depending on the
application requirements, hence enabling multiple trade-offs between
security and privacy, performance and accuracy (see below).

Collusion Resistance. Each participant can play multiple roles
without hindering Drynx’s security. For example, inHDS, a hospital
can be a DP and also play the role of a CN , to ensure its data
confidentiality without having to trust any other hospital. It can also
be a VN thus take part in the verification process.

Availability. Drynx’s privacy and security guarantees hold even
in the case where multiple CNs or DPs become unavailable.
Any entity can leave or join the system without hindering Drynx’s
operation, as long as they are not involved in a query under execution.
In the event of a CN becoming unresponsive during the query
execution, the CTA and CTKS steps cannot be finalized, as
they both require the participation of all CNs. Therefore, in this
case, the process is stopped and Q can request the same query by
choosing another set of CNs, e.g., by excluding the faulty CN(s).
An unresponsiveDP only reduces the number of responses included
in the statistic being computed and does not disrupt Drynx’s process.
Standard mechanisms, e.g., limiting the rate at which queries are
accepted, can be implemented in Drynx to avoid DDoS attacks.

Accuracy. There are several aspects that can influence output
precision in Drynx. (a) We first remark that theDPs’ inputs to the
system have to be approximated by fixed-point representation if they
are floating values, as explained in Section III-B.
(b) Drynx’s encodings and query executions do not intrinsically hinder
the accuracy of the computed results, as all operations are exact, as
long as the target function is exactly encodable. In fact, it is worth
noting that the encoding for the logistic regression training is built
from an approximation of the original cost function.
Additionally, (c) theDPs can privately decide whether to answer a
query; this choice can influence the final result. However, the number
of samples considered in the computation, i.e., ci in Definition 1, is
always sent toQ, who can then observe if this number changed since
her last query. It also enables her to take an informed decision on the
statistical significance of the results, to accept them or not.
(d) Drynx can guarantee differential privacy by adding noise to the
final result. In this case, Drynx returns approximate results, and
the accuracy loss depends on the chosen privacy parameters and
the executed operation. The choice of these parameters and the
perturbation introduced in the results is thus orthogonal to this work.
Finally, (e) malicious DPs can try to distort the query result by
inputting erroneous values. Drynx limits maliciousDPs’ influence
on the final result by enabling the querier to restrict the range of
possible inputs. This bounds the perturbation that some DPs can
generate on the results. If the inputs were not bounded, one malicious
DP could completely distort the final result by inputting extreme
values. It is difficult to provide hard numbers for the accuracy of Drynx
in the presence of maliciousDPs, as it depends on many parameters
such as the executed operation, the chosen input ranges, the number of
DPs and data records. Nonetheless, in Section IX we show how the
use of ranges limits the influence of maliciousDPs in two examples.

Authentication/Authorization. Authentication and authorization
fall out of the scope of this paper, but for the sake of completeness we
briefly mention here that Drynx can integrate off-the-shelf solutions
based on federated or distributed architectures [75], [76], [77].

IX. PERFORMANCE EVALUATION

We discuss our experimental setup and evaluate Drynx’s
performance. We show that it scales almost (in some cases better

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 11

than) linearly with the number of CNs, VNs and DPs, and we
compare Drynx against existing solutions. We also discuss multiple
security, privacy and performance tradeoffs.

A. System Implementation
We implemented Drynx in Go [78], and our full code is publicly

available [79]. We relied on Go’s native crypto-library and on public
advanced crypto-libraries [80]. For the implementation of the proofs’
storage and verification, we use a skipchain [81], which is made of
blockchain-like blocks that, to enable clients to efficiently navigate
arbitrarily on the chain, also contain back-and-forward pointers
to older and future blocks. We rely on a (private) permissioned
blockchain [82], as in our examplesHDS and PDS (Section III-A),
the participants, i.e., researchers, patients or hospitals, have to be
known and authorized. However, Drynx works independently of the
blockchain type, and a permission-less blockchain can also be used
in a less restrictive scenario. Drynx works independently of the used
Elliptic Curve; we tested it on the Ed25519 [83] and bn256 Elliptic
Curves [84]. Both curves provide 128-bit security, and we used bn256
by default as it enables pairing operations (required for range proofs).
Our prototype is built as a modular library of protocols that can be
combined in multiple ways. The communication between different
participants relies on TCP with authenticated channels (through TLS).

B. System Evaluation
We used Mininet [85] to simulate a realistic virtual network

between the nodes; we restricted the bandwidth of all connections
between nodes to 100Mbps and imposed a latency of 20ms on all
communication links. We evenly distributed the CNs,DPs, VNs
and Q on a set of 13 machines that have two Intel Xeon E5-2680
v3 CPUs with a 2.5GHz frequency that supports 24 threads on 12
cores and 256GB RAM.

We begin our evaluation by studying how the different steps in
Drynx’s pipeline can be executed in parallel. We then show that
Drynx’s runtime only slightly increases when the number of records
perDP grows (and the number ofDPs remains constant).

In our default setup, we consider 6 CNs and 7 VNs. We set the
proof verification thresholds T = 1.0 and Tsub = 0.3 and show, in
Section IX-B1, the effect of these thresholds on Drynx’s execution
time. The joint use of these thresholds ensures that all the proofs
are at least partially verified and that each sub-proof is verified
by fh VNs with a probability of 98.5%. We show Drynx’runtime
without the CDP protocol as CDP can be pre-computed or run
in parallel with other steps. We notice that the CDP ’s runtime
depends on the number of CNs and on the size l̃ of the list of noise
values. This creates a tradeoff between privacy and performance as
a greater l̃ provides a higher privacy level, as it reduces δ=1/̃l but
also increases the time to generate and shuffle the list of noise values.
With a Laplacian distribution and l̃= 100, CDP ’s runtime is 2.9
seconds with an overhead of 8.1 seconds for the proof verification.

1) Drynx Evaluation: Parallel Execution. Figure 5a shows
the runtime for training a logistic regression model. We use a
randomly-generated dataset of 12 floating-point features and 600,000
records split among 12 DPs. We remark that the operations are
verified in parallel to the query execution; this parallelization enables
Q to obtain the query results as soon as it is computed (denoted by
query execution dashed line). At the end of the verification process,
an auditor can check the query by verifying the signature and the
query-proofs map of the corresponding block in the proofs blockchain,
which in this case takes 0.4 seconds. The blocks’ sizes are small as

they only contain the query and the corresponding query-proofs map;
in this example one block is 56kB.

Scaling. We show how Drynx’s execution time evolves with an
increasing number of data records (Figure 5b), CNs and DPs
(Figure 5c) and VNs (Figure 5d). Inspired byHDS and PDS, we
simulate the computation of the heart-rate variance (values between
[0,256)) over a set of distributed patients. In Figure 5b, we observe
that Drynx scales better with (a) the number of records perDP (and
fixed number of DPs) than (b) with the number of DPs; case (a)
representsHDS, where aDP is an hospital with a database of multi-
ple patients, whereas case (b) represents PDS, where each patient is
aDP (#DPs= #records). This is because (a) enables theDPs
to locally pre-aggregate their data, thus reducing the amount of proofs
and computations. For Figures 5c and 5d and for the remaining part of
the evaluation, we set the number ofDPs to 10 per CN . InHDS,
this could correspond to a use case in which someDPs are hospitals
and the others are independent doctors sharing their data. We observe
that Drynx’s runtime increases with the number ofDPs, CNs, and
VNs. However, an increasing number ofCNs and VNs also means
a higher security level, as the trust is distributed among more entities.

Operations. Figure 5e shows Drynx’s runtime for all the opera-
tions with a large integer range of [0,220] for each of theDPs’ inputs
(the size of the DPs’ inputs is shown below each operation). We
observe that for all operations, the query execution time is always
below 1.5 seconds; and the overhead incurred by the proofs verifica-
tion increases with the size of theDPs’ inputs. This is expected, as
the larger the DPs’ inputs become, the more ciphertexts there are for
the system to process, and more proofs there are to verify. We also
observe that bit-wise operations take more time when theDPs opt
to send a bit value that is then obfuscated (using the CTO protocol).

Verification Thresholds. In Figure 5f, we show how the different
thresholds on the proofs verification affect Drynx’s performance with a
variance query. It can be seen that sending the proofs (communication
time is denoted by a dashed line) is the most time consuming part,
and that reducing the thresholds reduces the verification time. For
example, by having T=1 and Tsub=0.2, we effectively reduce the
verification workload by a factor close to 0.8, and a sub-proof is still
verified by fh=5 of the VNs with a high probability (83.48%).

Malicious DPs. By enforcingDPs’ values to be within a specific
range, Drynx limits the influence of maliciousDPs on the computed
statistic. We illustrate this in a simple and realistic example (using
PDH from Section III-A) by computing the average heart rate
over a dataset of 8922 hypertensive patients [86]. The real heart-rate
values are limited to be between 40 bpm (beats per minute) and
100 bpm and, as presented by Lorgis et al. [86], the average value
obtained among honestDPs is ah=70 bpm with a 95% confidence
interval of ±6 bpm. Each patient (DPi) must send (Vi, ci) =
([heart_rate],count) (Definition 1), in which heart_rate has to
be in [40,100] and count in [0,1]. In order to maximize the result’s
distortion, a maliciousDP can send an extreme value, which is within
the range bounds. We assume that all maliciousDPs collude and send
the same value heart_rate= e, and that the computed average is
given by am=(h·ah+e·d)/(h+c), where h and d are the numbers
of honest and dishonestDPs, and c is the sum of ci sent by malicious
DPs. The relative error is |1−(am/ah)|. We remark that a malicious
DP can maximize this error with a valid input by sending ([100],0).
In Figure 5g, we observe that with 1% of maliciousDPs for the range
[40,100], the highest relative error is 1.44%. This error corresponds to
1 bpm, still in the 95% confidence interval. We observe similar results
when the cosine similarity is computed in the same settings. For this
example, we also present the worst-case scenario in which the cosine

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 12

0 1 3 5 7 10 20
Runtime (s)

Q

CNs

DPs

VNs

Query Execution

Proof Overhead

Query Creation

Retrieval & Encoding

Query Broadcast

CTA

CTKS

Decoding

Query Check

Verify Range Proofs

Verify CTA Proofs

Verify CTKS Proofs

Block Insertion

(a) Log. reg. training:
12 features, 600,000 records, max. iter.: 100.

(b) Variance: increasing nbr. of records. (c) Variance: increasing nbr. of CNs and
DPs with 10DPs perCN .

(d) Variance: increasing nbr. of VNs. (e) Runtime for different operations with
DPs’ inputs sizes. Range [0,220].

(f) Variance: proofs verif. thresholds.

0.1 1 10
Percentage of malicious DPs (%)

0

10

20

30

40

50

R
e
la

ti
v
e
 E

rr
o
r

(%
)

avg - range: [40,100]

avg - range: [0,256]

cosim - range: [40,100]

cosim - range: [0,256]

(g) Average and cosim: influence of
malicious DPs.

(h) max (iterative): increasing range size. (i) Variance: runtime w.r.t. network
bandwidth and delay.

Fig. 5: Drynx Evaluation. In Figure 5h, the optimized max aggregates the runtime for all necessary query executions and the respective
proof overheads.

similarity computed on the honestDPs is 1 and the maliciousDPs
input extreme values from the range of accepted values to reduce the
similarity. As shown in Figure 5g, these numbers highly depend on
the chosen bounds. Even if many other factors influence this error
(e.g., the computed operation and the distribution of the values), it
shows that Drynx can limit the power of maliciousDPs.

Iterative Queries. Figure 5h depicts how Drynx’s runtime can be
reduced by using multiple queries to execute a min/max operation
in a binary-search style. This represents a tradeoff between privacy
and performance, as each iterative query is sent in clear, leaking
the interval where the min/max value is. We assume thatQ sets the
entropy limitEL=100, in other words, another entity in the system
can learn that the min/max is in an interval of at least 100 values.
The precise value is kept private. We observe that the execution time
is not improved when the range is small, but is greatly reduced when
the range grows, reaching an execution time reduction of almost 96%
at a range size of 100,000.

DPs answer DPs answer with RV CTA CTO CTKS CDP
QE C.C. - - (CN-1) · A (CN-1)·A +

(2·CN)·SM
(CN-1)·A

(3·CN)·SM
CN · VS

QE band. DP · 4p
(1.28kB)

DP · 4p
(1.28kB)

CN · 4p
(0.768kB)

2 · CN · 4p
(1.536kB)

CN · 6p
(1.344kB)

CN · 4p · n
(76kB)

QV band.
and

storage

DP ·VN
·(s+4p)

(15.68kB)

DP · VN · (s + (7 + 2l
+ 2l · CN)p + l · CN ·
pap + h) (2.43MB)

CN · V N ·
(s + 4p)

(9.048kB)

CN ·VN
·(s+8p+h)

(16.128kB)

CN ·VN
·(s+10p+h)
(18.816kB)

(CN +1)·VN
·(s+ 13np + h)

(2.04MB)

TABLE II: Bandwidth and Storage costs. DP, VN, CN = nbr. of entities;
RV = Range Valid.; QE=query exec.; C.C.=comput. complexity; QV=query
verif.; A=ciphertext addition; SM= scalar multi.; VS= verif. shuffle

Communication. Figure 5i depicts Drynx’s runtime evolution
with respect to both the communication delay and bandwidth capacity
with a heart rate variance query. We remark that when the latter is
reduced by a factor 100, the runtime increases by a factor 2 or 3. This
shows that our system is more sensitive to communication delay than
bandwidth capacity.

Bandwidth. In Table II, we present the computation and band-
width complexities for 1 ciphertext (i.e., 2 points (2p) on the Elliptic
Curve, 2p = 64 bytes) per DP . We use DP , VN , and CN as the

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 13

SMCQL UnLynx Boura et al. Prio Aono et al. Kim et al. Gazelle Helen Drynx

System
Properties

Distribution of Trust X ✔ ✔ ✔ X X 2-party ✔ ✔

Distrib. Comput. / Stor. ✔ ✔ ✔ ✔ X X 2-party ✔ ✔

Modular architecture X X ✔ ✔ X X X X ✔

Security
Guarantees
(assuming

Drynx’s threat
model)

Data Confidentiality X ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DPs’ Privacy X ✔ X X X X X ∼ ✔

Comput. Correctness X ✔ X X X X X ✔ ✔

Results’ Robustness X X X X X X X ✔ ✔

Functionalities

Accuracy|AUC

Statistics ✔ X X ✔ X X X X ✔

Lin. Reg. Training X X ✔ ✔ ∼ ∼ X ✔ ✔

Log. Reg. Training
SPECTF [55]
Pima [48]
LBW [38]
PCS [51]

- X ✔ ∼ ✔

75.4|0.76
75.4|0.87

-
-

✔

-
-

69.3|0.66
69.1|0.75

X X ✔

74.8|0.73
77.5|0.83
70.2|0.73
75.1|0.81

Neural Networks X X X X X X ✔ X X

(a) Solutions Comparison. For log. reg., we split the datasets [87], [88], [89], [90] among
10 DPs before standardization, scale factor = 102 for fixed-point represent., learning rate
0.1; 80% train., 20% test.

(b) Comparison with Prio for a min query.

Fig. 6: Drynx’s comparisons.
numbers of corresponding entities in the system. s is the size of the
Schnorr signature [57] (s=96 bytes), h is the hash size (h=32 bytes),
l comes from the range [0,ul) for the range proofs (ul=162,l=2),
pap is a pairing point’s size (pap=384 bytes) and n is the number
of values that are used in the CDP (n=100). We do not include the
computational complexity for the local computations executed by the
DPs and CNs. We refer to Neff’s work [69] for the complexity of
the verifiable shuffle (V S). We observe that when the number ofCNs
and VNs increases, the computational, bandwidth and storage costs
increase for all the steps. As having moreCNs or VNs improves the
security and the distribution of the workload in the system, it creates
a tradeoff between security, efficiency, and scalability.

2) Comparison with Existing Works: We supplement the
related work’s overview, described in Section II, by presenting here a
qualitative and quantitative comparison with multiple systems that are
Drynx’s closest related works. We compare Drynx against SMCQL
[10], UnLynx [16], Prio [26], Boura et al. [31], Aono et al. [33], Kim
et al. [13] and Gazelle [32]. In Table 6a, we show that Drynx provides
several functionalities in a strong threat model and achieves results
that can rival with other secure and dedicated approaches, notably
in the training of logistic regression models as depicted in Figure 6a.
Drynx performs as well or better than its two closest related works,
UnLynx and Prio, and provides better security guarantees.

We observe that solutions based exclusively on secret sharing and
garbled circuits, namely SMCQL [10], Prio [26] and Boura et al. [31],
offer multiple or advanced functionalities but fail to provide proofs of
correct executions. Systems solely based on homomorphic encryption
(HE), namely UnLynx [16], Aono et al. [33], Helen [36] and Kim
et al. [13], are limited in the functionalities they offer. Furthermore,
Aono et al. [33] and Kim et al. [13] rely on data centralization.
Gazelle [32] combines HE and garbled circuits and enables complex
evaluations of neural networks, but does not protectDPs’ privacy or
provide computation correctness. Contrarily, Drynx enables multiple
operations while distributing trust, computations, and data storage, and
it provides strict security guarantees in a stronger adversarial model.

We quantitatively compare Drynx to Unlynx [16] and Prio [26],
which are, to the best of our knowledge, the closest prior works.
Drynx’s query execution time for the sum is faster than UnLynx,
as we improved the CTKS protocol by enabling its execution in a
tree fashion, thus reducing its execution complexity fromO(#CN)
toO(log(#CN)). Unlike UnLynx, Drynx enables the verification
ofDPs’ value ranges, which, for the computation of a sum, adds
an overhead of only 0.6 seconds (out of a total time of 2 seconds,
as depicted in Figure 5e). However, Drynx enables a faster scalable
verification of proofs by an auditor. After the proofs are verified

and the results stored in the proof blockchain, an auditor can simply
request and verify the corresponding block, which in this case takes
approximately 0.4s. In Unlynx, an auditor has to request the proofs
from each entity and verify them by itself, which takes 1.4s.

Prio [26] relies on secret-shared non-interactive proofs that are
created by the DPs to prove the correctness of their inputs to the
system and that are collectively verified by the CNs. Even though
both systems have similar functionalities, Prio provides input-range
verification and computation correctness only when all the CNs
are honest-but-curious. We adapted the Gorrigan-Gibbs prototype
implementation [91] of Prio to a similar deployment environment
as Drynx so that both use the same communication settings, thus
enabling a fair comparison. In Figure 6b, we compare Prio’s runtime
in an illustrative example by using the min operation on the
range [0,1000) with increasing number of CNs andDPs, against
multiple settings of Drynx. This figure shows that Drynx significantly
outperforms Prio when computing min without using obfuscation
(CTO) hence accepts a small probability of error (1/(#G)) and
avoids the need for range proofs. If we use obfuscation, Drynx
scales similarly as Prio, but it must be noted that Drynx performs its
operations in a stronger threat model. When used in Prio’s threat model
(delimited by a black line), Drynx is about two times faster. This is
because each range proof can be sent and verified by a single VN as
allVNs are considered honest-but-curious under Prio’s threat model.

X. CONCLUSION

We have proposed Drynx, a novel system that enables a querier to
compute statistics and train machine-learning models on distributed
datasets in a strong adversarial model where no entity is individually
trusted. Drynx provides query-execution auditability and ensures the
end-to-end confidentiality of the data. It protects the privacy of the
data providers and relies on an immutable and distributed ledger to
provide efficient correctness verification and proofs storage. Drynx
is highly modular, offering configurable tradeoffs between security,
privacy, and efficiency. Finally, Drynx enables privacy-preserving
computations of widely-used statistics on sensitive and distributed
data, thus offering features that are absolutely needed in crucial areas
such as user-behavior analysis or research for personalized medicine.

ACKNOWLEDGMENT

The authors would like to thank Henry Corrigan-Gibbs and all
members of the Laboratory for Data Security at EPFL for their
helpful feedback and their support.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 14

REFERENCES

[1] “Big Data Privacy is a Bigger Issue Than You Think.” https://www.techrepublic.
com/article/big-data-privacy-is-a-bigger-issue-than-you-think (25.06.2018).

[2] “GDPR,” https://www.eugdpr.org (25.07.2018).
[3] “A new data breach may have exposed ... every American adult,”

https://tinyurl.com/ydz7jpdk (4.02.2019).
[4] “Equifax Breach,” https://tinyurl.com/y9h4pgsk (4.02.2019).
[5] V. Bindschaedler, R. Shokri, and C. A. Gunter, “Plausible deniability for

privacy-preserving data synthesis,” VLDB, vol. 10, no. 5, 2017.
[6] X. Hu, M. Yuan, J. Yao, Y. Deng, L. Chen, Q. Yang, H. Guan, and J. Zeng,

“Differential Privacy in Telco Big Data Platform,” VLDB, vol. 8, no. 12, 2015.
[7] N. Johnson, J. P. Near, and D. Song, “Towards Practical Differential Privacy

for SQL Queries,” VLDB, vol. 11, no. 5, 2018.
[8] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: protecting

confidentiality with encrypted query processing,” in SOSP. ACM, 2011.
[9] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical

queries over encrypted data,” in VLDB, vol. 6, 2013.
[10] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers, “SMCQL: Secure

Querying for Federated Databases,” VLDB, vol. 10, no. 6, pp. 673–684, 2017.
[11] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, “Towards Statistical Queries

over Distributed Private User Data.” in NSDI, vol. 12, 2012, pp. 13–13.
[12] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejerano,

“Deriving Genomic Diagnoses without Revealing Patient Genomes,” Science,
vol. 357, no. 6352, pp. 692–695, 2017.

[13] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure Logistic Regression
Based on Homomorphic Encryption: Design and Evaluation,” JMIR, 2018.

[14] L. Melis, G. Danezis, and E. De Cristofaro, “Efficient Private Statistics with
Succinct Sketches,” NDSS, 2015.

[15] J. L. Raisaro, J. Troncoso-Pastoriza, M. Misbach, J. S. Sousa, S. Pradervand,
E. Missiaglia, O. Michielin, B. Ford, and J.-P. Hubaux, “Medco: Enabling Secure
and Privacy-Preserving Exploration of Distributed Clinical and Genomic Data,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018.

[16] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford,
and J.-P. Hubaux, “UnLynx: A Decentralized System for Privacy-Conscious
Data Sharing,” PoPETS, vol. 2017, no. 4, pp. 232–250, 2017.

[17] D. B. Baker, J. Kaye, and S. F. Terry, “Governance through privacy, fairness,
and respect for individuals,” eGEMs, vol. 4, no. 2, 2016.

[18] X. Dong, J. Yu, Y. Luo, Y. Chen, G. Xue, and M. Li, “Achieving an Effective,
Scalable and Privacy-Preserving Data Sharing Service in Cloud Computing,”
Computers & security, vol. 42, pp. 151–164, 2014.

[19] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure Multi-Owner Data
Sharing for Dynamic Groups in the Cloud,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 6, pp. 1182–1191, 2013.

[20] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa, “Oblivious Multi-Party Machine Learning on Trusted Processors,”
in USENIX Security Symposium, 2016, pp. 619–636.

[21] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste, “Students
and Taxes: A Privacy-Preserving Study using Secure Computation,” PoPETS,
vol. 2016, no. 3, pp. 117–135, 2016.

[22] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A Framework for Fast
Privacy-Preserving Computations,” in European Symposium on Research in
Computer Security. Springer, 2008, pp. 192–206.

[23] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur,
and D. Evans, “Privacy-Preserving Distributed Linear Regression on
High-Dimensional Data,” PoPETS, vol. 2017, no. 4, pp. 345–364, 2017.

[24] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in Proceedings
of the 22nd ACM SIGSAC CCS, 2015.

[25] H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure distributed
storage systems,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 12, pp. 2953–2964, 2018.

[26] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, Robust, and Computation of
Aggregate Statistics.” in NSDI, 2017, pp. 259–282.

[27] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,
“Privacy-Preserving Ridge Regression on Hundreds of Millions of Rs,” in 2013
IEEE Symposium on Security and Privacy, 2013, pp. 334–348.

[28] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen, H. Singh,
A. Modi, and S. Badrinarayanan, “Big Data Analytics over Encrypted Datasets
with Seabed.” in OSDI, 2016, pp. 587–602.

[29] M. Du, Q. Wang, M. He, and J. Weng, “Privacy-preserving indexing and query
processing for secure dynamic cloud storage,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 9, pp. 2320–2332, 2018.

[30] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-Preserving
Machine Learning,” in 38th IEEE Symposium on Security and Privacy, 2017.

[31] C. Boura, I. Chillotti, N. Gama, D. Jetchev, S. Peceny, and A. Petric,
“High-precision privacy-preserving real-valued function evaluation,” FC ’18.

[32] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low latency
framework for secure neural network inference,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1651–1669.

[33] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, “Scalable and Secure
Logistic Regression via Homomorphic Encryption,” in Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy. ACM, 2016.

[34] Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-preserving deep learning
via additively homomorphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2018.

[35] Q. Jia, L. Guo, Z. Jin, and Y. Fang, “Preserving model privacy for machine
learning in distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, 2018.

[36] W. Zheng, R. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously secure
coopetitive learning for linear models,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2019, pp. 915–929.

[37] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in ACM Conference on
Computer and Communications Security (CCS), 2016.

[38] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning:
A client level perspective,” arXiv preprint arXiv:1712.07557, 2017.

[39] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regression,” in
Advances in neural information processing systems (NIPS), 2009.

[40] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via aggregation
of locally trained classifiers,” in Advances in Neural Information Processing
Systems (NIPS), 2010.

[41] M. Kim, J. Lee, L. Ohno-Machado, and X. Jiang, “Secure and differentially
private logistic regression for horizontally distributed data,” IEEE Transactions
on Information Forensics and Security (TIFS), 2019.

[42] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning without
distress: Privacy-preserving empirical risk minimization,” in Advances in Neural
Information Processing Systems (NIPS), 2018.

[43] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in ACM Conference on
Computer and Communications Security (CCS), 2015.

[44] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in IEEE Symposium on Security and
Privacy (SP), 2017.

[45] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine learning, 2011.

[46] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “Dp-admm: Admm-based
distributed learning with differential privacy,” IEEE Transactions on Information
Forensics and Security (TIFS), 2019.

[47] B. Jayaraman and D. Evans, “Evaluating differentially private machine learning
in practice,” in USENIX Security Symposium, 2019.

[48] “GA4GH,” https://genomicsandhealth.org (30.11.2018).
[49] J. V. Selby, A. C. Beal, and L. Frank, “The patient-centered outcomes research

institute (pcori) national priorities for research and initial research agenda,” Jama,
vol. 307, no. 15, pp. 1583–1584, 2012.

[50] “SPHN,” https://www.sphn.ch/en.html (29.10.2018).
[51] “HealthLNK,” https://tinyurl.com/y7dqhws6 (29.01.2019).
[52] “Apple Watch Heart Monitoring,” https://tinyurl.com/y7ctnauc (29.01.2019).
[53] “P4MI,” http://p4mi.org (29.01.2019).
[54] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE transactions on information theory, vol. 31, no. 4,
pp. 469–472, 1985.

[55] J. Camenisch and M. Stadler, “Proof Systems for General Statements about
Discrete Logarithms,” Technical report/Dept. of Computer Science, ETH Zürich,
vol. 260, 1997.

[56] J. Camenisch and R. Chaabouni, “Efficient Protocols for Set Membership and
Range Proofs,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2008, pp. 234–252.

[57] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems,” in Advances in Cryptology—CRYPTO’86.
Springer, 1986, pp. 186–194.

[58] L. Kokoris-Kogias, L. Gasser, I. Khoffi, P. Jovanovic, N. Gailly, and B. Ford,
“Managing Identities using Blockchains and CoSi,” in HotPETs, 2016.

[59] S. Nakamoto, “Bitcoin: A Peer-To-Peer Electronic Cash System,” 2008.
[60] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”

Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.
[61] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger

technologies for biomedical and health care applications,” Journal of the
American Medical Informatics Association, vol. 24, no. 6, pp. 1211–1220, 2017.

[62] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,
vol. 99, 1999, pp. 173–186.

[63] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff: BFT
consensus in the lens of blockchain,” arXiv preprint arXiv:1803.05069, 2018.

[64] C. Dwork, “Differential Privacy,” Encyclopedia of Cryptography and Security,
pp. 338–340, 2011.

[65] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Theory of cryptography conference. Springer, 2006,
pp. 265–284.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 15

[66] A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally utility-
maximizing privacy mechanisms,” SIAM Journal on Computing, vol. 41, no. 6,
pp. 1673–1693, 2012.

[67] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,”
Foundations and Trends R© in Theoretical Computer Science, vol. 9, no. 3–4,
pp. 211–407, 2014.

[68] C. A. Neff, “A Verifiable Secret Shuffle and its Application to E-Voting,” in
Proceedings of the 8th ACM conference on Computer and Communications
Security. ACM, 2001, pp. 116–125.

[69] ——, “Verifiable Mixing (Shuffling) of ElGamal pairs,” VHTi Technical
Document, 2003.

[70] S. Bayer and J. Groth, “Efficient zero-knowledge argument for correctness of
a shuffle,” in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2012, pp. 263–280.

[71] J. Groth, “A verifiable secret shuffe of homomorphic encryptions,” in Interna-
tional Workshop on Public Key Cryptography. Springer, 2003, pp. 145–160.

[72] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Scalable
Anonymous Group Communication in the Anytrust Model,” DTIC Document,
Tech. Rep., 2012.

[73] Y. Lindell, “How to simulate it–a tutorial on the simulation proof technique,”
in Tutorials on the Foundations of Cryptography. Springer, 2017, pp. 277–346.

[74] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[75] “OpenID Connect,” https://openid.net/connect/ (04.09.2019).
[76] “OAuth 2.0,” https://oauth.net (04.09.2019).
[77] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,

“Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing,” in 25th USENIX Security Symposium, 2016, pp. 279–296.

[78] “Go Programming Language,” https://golang.org (25.06.2017).
[79] “Drynx Implementation,” https://github.com/ldsec/drynx (19.11.2018).
[80] “DEDIS Research Lab at EPFL, Advanced crypto library for the Go language,”

https://github.com/DeDiS/crypto (12.08.2018).
[81] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi,

J. Cappos, and B. Ford, “CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains and Verified Builds,” in 26th USENIX
Security, 2017, pp. 1271–1287.

[82] G. Danezis and S. Meiklejohn, “Centrally Banked Cryptocurrencies,” Proceedings
of the 24rd Network and Distributed System Security Symposium, 2016.

[83] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-Speed
High-Security Signatures,” Journal of Cryptographic Engineering, 2012.

[84] P. S. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves of Prime Order,”
in International Workshop on Selected Areas in Cryptography. Springer, 2005.

[85] “Mininet,” http://mininet.org (14.08.2018).
[86] L. Lorgis, M. Zeller, P. Jourdain, J. Beaune, J.-P. Cambou, B. Vaisse,

B. Chamontin, and Y. Cottin, “Heart rate distribution and predictors of increased
heart rate among French hypertensive patients with stable coronary artery disease.
data from the lhycorne cohort,” Archives of cardiovascular diseases, 2009.

[87] “SPECTF,” https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart (14.04.2018).
[88] “Pima Indians Diabetes Dataset,” https://tinyurl.com/y8o3x8me (14.04.2018).
[89] “Prostate Cancer Data,” https://tinyurl.com/ycsc8f9d (14.03.2018).
[90] “Low Birth Weight Dataset,” https://tinyurl.com/yd6mclh6 (21.07.2018).
[91] “Prio Implementation,” https://github.com/henrycg/prio (1.07.2018).

APPENDIX A
TABLE OF SYMBOLS

Symbol Description
HDS, PDS Hospitals & Patients Data Sharing
G,B, p Elliptic curve; base point on G, prime

EΩ(m) = (C1,C2) ElG encrypt. ofm under key Ω,
=(rB,mB+rΩ) nonce r

K CNs pub. coll. key
(ki,Ki) CNs CNi priv., pub. key

A,A1,A2, Yi, yi ZKPs pub. (uppercase), discrete log.
Q,DP ,N Querier, Data Provider, #DP
CN , VN Computing & Verifying Node

fh Threshold of honest VNs
π, ρ, r̄i linear combi., encoding, records

Vi=[vi,1,...,vi,l], ci vector, count
CTA,CTO,CTKS Coll. Tree Aggr., Obfusc., Key Switch.

wi,1,wi,2 CNi’s contribution inCTKS
αi, si CNi secret random nonce

CDP , (ε, δ, θ) Coll. Diff. Privacy & params.
[bl,bu], [0,ul) Range, default range

xi, (Ai,j, Zi,H, Vi,j, ai,j) Range proof priv., pub. values
T , Tsub Proofs and sub-proofs verif. thresh.
Nda,Ni,D Tot. &DPi #records, dataset dim.
pver, pversub proof, sub-proof

Pfh prob. of fh VNs verif.
TABLE III: Table of Recurrent Symbols.

APPENDIX B
ERROR PROBABILITY

In Section VII, we notice that the result of bit-wise operations,
when DPs are requested to answer with random values Ris, can
be erroneous with a probability smaller than 1/(#G−1). We
demonstrate here this result and provide an expression for the
probability of error Pn where n is the number ofDPs.

Pn=P(
n∑
i=1

Ri=0)=
#G−1∑
a=0

P(
n∑
i=1

Ri=0|
n−1∑
i=1

Ri=a)·P(
n−1∑
i=1

Ri=a)

=P(
n∑
i=1

Ri=0|
n−1∑
i=1

Ri=0)·P(
n−1∑
i=1

Ri=0)

+
#G−1∑
a=1

P(
n∑
i=1

Ri=0|
n−1∑
i=1

Ri=a)·P(
n−1∑
i=1

Ri=a)

=
#G−1∑
a=1

P(
n∑
i=1

Ri=0|
n−1∑
i=1

Ri=a)·P(
n−1∑
i=1

Ri=a)

=P(Rn=−a)·
#G−1∑
a=1

P(
n−1∑
i=1

Ri=a)

= 1
#G−1 ·

#G−1∑
a=1

P(
n−1∑
i=1

Ri=a)=
1

#G−1 ·(1−Pn−1).

We have Pn= 1
#G−1 ·(1−Pn−1)≤ 1

#G−1 and Pn=
n∑
i=2

(−1)i·(1
#G−1)i−1.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X X 16

David Froelicher is a PhD candidate at EPFL under the
direction of professors Jean-Pierre Hubaux and Bryan
Ford. He earned his MS and BS degree in Communication
Systems and IT Security at EPFL and did a 6-month
internship at NEC. His main research interests are in
applied cryptography, privacy and decentralized systems.

Juan Ramón Troncoso-Pastoriza, IEEE Senior
Member, senior researcher at the Laboratory of Data
Security, EPFL, Switzerland. His research work is
focused on applied cryptography for the protection
of sensitive signals in distributed and outsourced
environments, with a special interest in medical
environments and genomic privacy. He actively contributes
to the Homomorphic Encryption standardization
efforts (https://homomorphicencryption.org), and to
the design and development of the Lattigo library
(https://github.com/ldsec/lattigo). He has coauthored

numerous works and holds five international patents in the field of information security,
and has been part of the organizing committee and TPC of more than 20 workshops
and conferences in this area. He has been the scientific coordinator of the H2020 project
WITDOM, and is currently an associate editor of four journals on Information Security.

Joao Sa Sousa is currently a Security / Privacy Software
Engineer at EPFL under the direction of professor
Jean-Pierre Hubaux. He has a MS and BS degree in
Informatics Engineering at the University of Coimbra and
did a 3-month internship at CMU-SV. His main interests
include Wireless Security, Genomic Privacy, Cryptography,
Android Development, Web Development and Business
Management.

Jean-Pierre Hubaux, IEEE Fellow, is a full professor
in the School of Information and Communication
Sciences at EPFL and head of the Laboratory for Data
Security. Through his research, he contributes to laying the
foundations and developing the tools for protecting privacy
in today’s hyper-connected world. He has pioneered the
areas of privacy and security in mobile/wireless networks
and in personalized health.

He is the academic director of the Center for Digital
Trust (C4DT). He leads the Data Protection in Personalized
Health (DPPH) project funded by the ETH Council and

is a co-chair of the Data Security Work Stream of the Global Alliance for Genomics
and Health (GA4GH). He is a Fellow of both IEEE (2008) and ACM (2010). Recent
awards: two of his papers obtained distinctions at the IEEE Symposium on Security
and Privacy in 2015 and 2018.

