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Using real-world evidence in biomedical research, an indispensable complement to clinical

trials, requires access to large quantities of patient data that are typically held separately by

multiple healthcare institutions. We propose FAMHE, a novel federated analytics system

that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving

analyses of distributed datasets by yielding highly accurate results without revealing any

intermediate data. We demonstrate the applicability of FAMHE to essential biomedical

analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide

association studies in medical genetics. Using our system, we accurately and efficiently

reproduce two published centralized studies in a federated setting, enabling biomedical

insights that are not possible from individual institutions alone. Our work represents a

necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific

collaborations.
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A key requirement for fully realizing the potential of pre-
cision medicine is to make large amounts of medical data
interoperable and widely accessible to researchers. Today,

however, medical data are scattered across many institutions,
which renders centralized access and aggregation of such data
challenging, if not impossible. The challenges are not due to the
technical hurdles of transporting high volumes of heterogeneous
data across organizations but to the legal and regulatory barriers
that make the transfer of patient-level data outside a healthcare
provider complex and time-consuming. Moreover, stringent data
protection and privacy regulations (e.g., General Data-Protection
Regulation (GDPR)1) strongly restrict the transfer of personal
data, including even pseudonymized data, across jurisdictions.

Federated analytics (FA) is emerging as a new paradigm that
seeks to address the data governance and privacy issues related to
medical-data sharing2–4. FA enables different healthcare provi-
ders to collaboratively perform statistical analyses and to develop
machine-learning models, without exchanging the underlying
datasets. Only aggregated results or model updates are trans-
ferred. In this way, each healthcare provider can define its own
data governance and maintain control over the access to its
patient-level data. FA offers opportunities for exploiting large and
diverse volumes of data distributed across multiple institutions.
These opportunities can facilitate the development and validation
of artificial intelligence algorithms that yield more accurate,
unbiased, and generalizable clinical recommendations, as well as
accelerate novel discoveries. Such advances are particularly
important in the context of rare diseases or medical conditions,
where the number of affected patients in a single institution is
often not sufficient to identify meaningful statistical patterns with
enough statistical power.

The adoption of FA in the medical sector, despite its potential,
has been slower than expected. This is in large part due to the
unresolved privacy issues of FA, related to the sharing of model
updates or partial data aggregates in cleartext. Indeed, despite
patient-level data not being transferred between the institutions
engaging in FA, it has been shown that the model updates (or
partial aggregates) themselves can, under certain circumstances,
leak sensitive personal information about the underlying indivi-
duals, thus leading to re-identification, membership inference,
and feature reconstruction5,6. Our work focuses on overcoming
this key limitation of existing FA approaches. We note that
limited data interoperability across different healthcare providers
is another potential challenge in deploying FA; this, in practice,
can be surmounted by harmonizing the data across institutions
before performing the analysis.

Several open-source software platforms have recently been
developed to provide users streamlined access to FA
algorithms3,7,8. For example, DataSHIELD7 is a distributed data
analysis and a machine-learning (ML) platform based on the
open-source software R. However, none of these platforms
address the aforementioned problem of indirect privacy leakages
that stem from their use of “vanilla” federated learning. Hence, it
remains unclear whether these existing solutions are able to
substantially simplify regulatory compliance, compared to more
conventional workflows that centralize the data9–11, if the partial
aggregates and model updates could still be considered as per-
sonal identifying data5,6,12–14.

More sophisticated solutions for FA, which aim to provide
end-to-end privacy protection, including for the shared inter-
mediate data, have been proposed15–25. These solutions use
techniques such as differential privacy (diffP)26, secure multiparty
computation (SMC), and homomorphic encryption (HE). How-
ever, these techniques often achieve stronger privacy protection at
the expense of accuracy or computational efficiency, thus limiting
their applicability. Existing diffP techniques for FA, which

prevent privacy leakage from the intermediate data by adding
noise to it before sharing, often require prohibitive amounts of
noise, which leads to inaccurate models. Furthermore, there is a
lack of consensus around how to set the privacy parameters for
diffP in order to provide acceptable mitigation of inference risks
in practice27. SMC and HE are cryptographic frameworks for
securely performing computation over private datasets (pooled
from multiple parties in the context of FA, in an encrypted form)
without any intermediate leakage, but both come with notable
drawbacks. SMC incurs a high network-communication overhead
and has difficulty scaling to a large number of data providers
(DPs). HE imposes high storage and computational overheads
and introduces a single point of failure in the standard centralized
setup, where a single party receives all encrypted datasets to
securely perform the joint computation. Distributed solutions
based on HE21–23,28 have also been proposed to decentralize both
the computational burden and the trust, but existing solutions
address only simple calculations (e.g., counts and basic sample
statistics) and are not suited for complex tasks.

Here, we present FAMHE, an approach, based on multiparty
homomorphic encryption (MHE)29, to privacy-preserving FA,
and we demonstrate its ability to enable efficient federated
execution of two fundamental workflows in biomedical research:
Kaplan–Meier survival analysis and genome-wide association
studies (GWAS). MHE is a recently proposed multiparty com-
putation framework based on HE; it combines the power of HE to
perform computation on encrypted data without communication
between the parties, with the benefits of interactive protocols,
which can simplify certain expensive HE operations. Building
upon the MHE framework, we introduce an approach to FA,
where each participating institution performs local computation
and encrypts the intermediate results by using MHE; the results
are then combined (e.g., aggregated) and distributed back to each
institution for further computation. This process is repeated until
the desired analysis is completed. Contrary to diffP-based
approaches that rely on obfuscation techniques to mitigate the
leakage in intermediate results, by sharing only encrypted inter-
mediate results, FAMHE provides end-to-end privacy protection,
without sacrificing accuracy. By sharing only encrypted infor-
mation, our approach guarantees that, whenever needed, a
minimum level of obfuscation can be applied only to the final
result in order to protect it from inference attacks, instead of
being applied to all intermediate results. Furthermore, FAMHE
improves over both SMC and HE approaches by minimizing
communication, by scaling to large numbers of DPs, and by
circumventing expensive noninteractive operations (e.g., boot-
strapping in HE). Our work also introduces a range of optimi-
zation techniques for FAMHE, including optimization of the local
vs. collective computation balance, ciphertext packing strategies,
and polynomial approximation of complex operations; these
techniques are instrumental in our efficient design of FAMHE
solutions for survival analysis and GWAS.

We demonstrate the performance of FAMHE by replicating
two published multicentric studies that originally relied on data
centralization. These include a study of metastatic cancer patients
and their tumor mutational burden (TMB)30, and a host genetic
study of human immunodeficiency virus type 1 (HIV-1)-infected
patients31. By distributing each dataset across multiple DPs and
by performing federated analyses using our approach, we suc-
cessfully recapitulated the results of both original studies. Our
solutions are efficient in terms of both execution time and
communication, e.g., completing a GWAS over 20K patients and
four million variants in <5 h. In contrast to most prior work on
biomedical FA, which relied on artificial datasets15,17,23,32, our
results closely reflect the potential of our approach in real
application settings. Furthermore, our approach has the potential
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to simplify the requirements for contractual agreements and the
obligations of data controllers that often hinder multicentric
medical studies, because data processed by using MHE can be
considered anonymous data under the GDPR12. Our work shows
that FAMHE is a practical framework for privacy-preserving FA
for biomedical workflows and it has the power to enable a range
of analyses beyond those demonstrated in this work.

Results
Overview of FAMHE. In FAMHE, we rely on MHE to perform
privacy-preserving FA by pooling the advantages of both inter-
active protocols and HE and by minimizing their disadvantages.
In particular, by relying on MHE and on the distributed protocols
for FA proposed by Froelicher et al.24, our approach enables
several sites to compute on their local patient-level data and then
encrypt (Local Computation & Encryption in Fig. 1) and
homomorphically combine their local results under MHE (Col-
lective Aggregation (CA) in Fig. 1). These local and global steps
can be repeated (Iterate in Fig. 1), depending on the analytic task.
At each new iteration, participating sites use the encrypted
combination of the results of the previous iteration to compute
on their local data without the need for decryption, e.g., gradient-
descent steps in the training of a regression model. The collec-
tively encrypted and aggregated final result is eventually switched
(Collective Key Switching in Fig. 1) from encryption under the
collective public key to encryption under the querier’s public key
(the blue lock in Fig. 1) such that only the querier can decrypt.
The use of MHE ensures that the secret key of the underlying HE
scheme never exists in full. Instead, the control over the
decryption process is distributed across all participating sites,
each one holding a fragment of the decryption key. This means
that all participating sites have to agree to enable the decryption
of any piece of data and that no single entity alone can decrypt
the data. As described in System and Threat Model in the
“Methods” section, FAMHE is secure in a passive adversarial
model in which all but one DPs can be dishonest and collude
among themselves.

FAMHE builds upon optimization techniques for enabling the
efficient execution of complex iterative workflows: (1) by relying

on edge computing and optimizing the use of computations on
the DPs’ cleartext data; (2) by relying on the packing ability of the
MHE scheme to encrypt a vector of values in a single ciphertext
such that any computation on a ciphertext is performed
simultaneously on all the vector values, i.e., Single Instruction,
Multiple Data (SIMD); (3) by further building on this packing
property to optimize the sequence of operations by formatting a
computation output correctly for the next operation; (4) by
approximating complex computations such as matrix inversion
(i.e., division) by polynomial functions (additions and multi-
plications) to efficiently compute them under HE; and (5) by
replacing expensive cryptographic operations by lightweight
interactive protocols. Note that FAMHE avoids the use of
centralized complex cryptographic operations that would require
a more conservative parameterization and would result in higher
computational and communication overheads (e.g., due to the use
of larger ciphertexts). Therefore, FAMHE efficiently minimizes
the computation and communication costs for a high-security
level. We provide more details of our techniques in the
“Methods” section.

We implemented FAMHE based on Lattigo33, an open-source
Go library for multiparty lattice-based homomorphic encryption
cryptography. We chose the security parameters to always ensure
high 128-bit-level security. We refer to the “Methods” section for
a detailed configuration of FAMHE used in our experiments.

To demonstrate the performance of FAMHE, we developed
efficient FA solutions based on FAMHE and our optimization
techniques for two essential biomedical tasks: Kaplan–Meier
survival analysis and GWAS. We present the results of these
solutions on real datasets from two peer-reviewed studies that
were originally conducted by centralizing the data from multiple
institutions.

Multicentric Kaplan–Meier survival analysis using FAMHE.
Kaplan–Meier survival analysis is a widely used method to assess
patient’s response (i.e., survival) over time to a specific treatment.
For example, in a recent study, Samstein et al.30 demonstrated
that the TMB is a predictor of clinical responses to immune
checkpoint inhibitor (ICI) treatments in patients with metastatic

Fig. 1 System Model and FAMHE workflow. All entities are interconnected (dashed lines) and communication links at each step are shown by thick
arrows. All entities (data providers (DPs) and querier) are honest but curious and do not trust each other. In 1. the querier sends the query (in clear) to all
the DPs who (2.) locally compute on their cleartext data and encrypt their results with the collective public key. In 3. the DPs' encrypted local results are
aggregated. For iterative tasks, this process is repeated (Iterate). In 4. the final result is then collectively switched by the DPs from the collective public key
to the public key of the querier. In 5. the querier decrypts the final result.
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cancers. To obtain this conclusion, they computed Kaplan–Meier
overall survival (OS) curves of 1662 advanced-cancer patients
treated with ICI, and that are stratified by TMB values. OS was
measured from the date of first ICI treatment to the time of death
or the last follow-up. In Fig. 2, we show the survival curves
obtained from the original centralized study (Centralized, Non-
secure) and those obtained through our privacy-preserving fed-
erated workflow of FAMHE executed among three DPs. Note that
for FAMHE, to illustrate the workflow of federated collaboration,
we distributed the dataset across the DPs, each hosted on a dif-
ferent machine. FAMHE’s analysis is then performed with each
DP having access only to the locally held patient-level data, thus
closely reflecting a real collaboration setting that involves inde-
pendent healthcare centers. As a result, our federated solutions
circumvent the privacy risks associated with data centralization in
the original study. We observed that FAMHE produces survival
curves identical to those of the original nonsecure approach. By
using either approach, we are able to derive the key conclusion
that the benefits of ICI increase with TMB.

In Fig, 2b, we show that FAMHE produces exact results while
maintaining computational efficiency, as the computation of the
survival curves shown in Fig. 2a is executed in < 12 s, even when
the data are scattered among 96 DPs. We also observe that the
execution time is almost independent of the DPs’ dataset size, as
the same experiment performed on a 10 × larger dataset
(replicated 10 ×) takes almost exactly the same amount of time.
We show that FAMHE’s execution time remains below 12 s for
up to 8192 time points. We note that, in this particular study,
the number of time points (instants at which an event can
occur) is smaller than 200, due to the rounding off of survival
times to months. In summary, the FAMHE-based Kaplan–Meier
estimator produces precise results and scales efficiently with the
number of time points, each DPs’ dataset size, and the number
of DPs. We remark that the hazard ratio, which is often
computed in survival-curve studies, can be directly estimated by
the querier, based on the final result34. It is also possible to
compute the hazard ratios directly by following the general
workflow of FAMHE described in Fig. 1. This requires the
training of proportional-hazard regression models that are
closely related to generalized linear models35 that our GWAS
solution also utilizes.

Multicentric GWAS using FAMHE. GWAS are a fundamental
analysis tool in medical genetics that identifies genetic variants
that are statistically associated with given traits, such as disease
status. GWAS have led to numerous discoveries about human
health and biology, and efforts to collect larger and more diverse
cohorts to improve the power of GWAS. Their relevance to
diverse human populations continues to grow. As we progress
toward precision medicine and genetic sequencing becomes more
broadly incorporated into routine patient care, large-scale GWAS
that span multiple medical institutions will become increasingly
more valuable. Here, we demonstrate the potential of FAMHE to
enable multicentric GWAS that fully protects the privacy of
patients’ data throughout the analysis.

We evaluated our approach on a GWAS dataset from McLaren
et al.31; they studied the host genetic determinants of HIV-1 viral
load in an infected population of European individuals. It is
known that the viral load observed in an asymptomatic patient
after primary infection positively correlates with the rate of
disease progression; this is the basis for the study of how host
genetics modulates this phenotype. We obtained the available
data for a subset of the cohort including 1857 individuals from
the Swiss HIV Cohort Study, with 4,057,178 genotyped variants.
The dataset also included 12 covariates that represent ancestry
components, which we also used in our experiments to correct for
confounding effects. To test our federated-analysis approach, we
distributed, in a manner analogous to the survival analysis
experiments, the GWAS dataset across varying numbers of DPs.

Following the approach of McLaren et al.31, we performed
GWAS using linear regression of the HIV-1 viral load on each of
the more than four million variants, always including the
covariates. To enable this large-scale analysis in a secure and
federated manner, we developed two complementary approaches
based on our system: FAMHE-GWAS and FAMHE-FastGWAS.
FAMHE-GWAS performs exact linear regression and incurs no
loss of accuracy, whereas FAMHE-FastGWAS achieves faster
runtime through iterative optimization at a small expense of
accuracy. We believe that both modes are practical and that the
choice between them would depend on the study setting.
Importantly, both solutions do not reveal intermediate results
at any point during the computation, and any data exchanged
between the DPs to facilitate the computation are always kept

Fig. 2 Secure and distributed reproduction of a survival-curve study. a Survival curves generated in a centralized nonsecure manner and with FAMHE on
the data used by Samstein et al.30. TMB stands for tumor mutational burden. With FAMHE, the original data are split among three data providers, and the
querier obtains exact results. The table in a displays the number of patients at risk at a specific time. The exact same numbers are obtained with the
centralized, nonsecure solution and with FAMHE. b FAMHE execution time for the computation of one (or multiple) survival curve(s) with a maximum of
8192 time points. For both the aggregation and key switching (from the collective public key to the querier’s key), most of the execution time is spent in
communication (up to 98%), as the operations on the encrypted data are lightweight and parallelized on multiple levels, i.e., among the data providers and
among the encrypted values.
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hidden by collective encryption. We also emphasize that the DPs
in both solutions utilize their local cleartext data and securely
aggregate encrypted intermediate results, following the workflow
presented in Fig. 1.

Both our solutions use a range of optimized computational
routines that we developed in this work to carry out the
sophisticated operations required in GWAS by using MHE. In
FAMHE-GWAS, we exploit the fact that the same set of
covariates are included in all regression models by computing
once the inverse covariance matrix of the covariates, then for each
variant computing an efficient update to the inverse matrix to
reflect the contribution of each given variant. Our solution
employs efficient MHE routines for each of these steps, including
matrix inversion. In FAMHE-FastGWAS, we first subtract the
covariate contributions from the phenotype by training once a
linear model including only the covariates. We then train in
parallel univariate models for all four million variants. We
perform this step efficiently by using the stochastic gradient-
descent algorithm implemented with MHE. Taken together, these
techniques illustrate the computational flexibility of FAMHE and
its potential to enable a wide range of analyses. Further details of
our solutions are provided in the “Methods” section.

We compare FAMHE-GWAS and FAMHE-FastGWAS against
(i) Original, the centralized nonsecure approach adopted by the
original study, albeit on the Swiss HIV Cohort Study dataset, (ii)
Meta-analysis36, a solution in which each DP locally and
independently performs GWAS to obtain summary statistics that
are then shared and combined (through the weighted Z test)
across DPs to produce a single statistic for each variant that
represents its overall association with the target phenotype, and
(iii) Independent, a solution in which a DP uses only its part of
the dataset to perform GWAS. For all baseline approaches, we
used the PLINK36 software to perform the analysis (see
“Methods” section for the detailed procedure). Note that Meta-
analysis can also be securely executed by first encrypting each
DP’s local summary statistics then following the FA workflow
presented in Fig. 1.

The Manhattan plots visualizing the GWAS results obtained by
each method are shown in Fig. 3a. Both our FAMHE-based
methods produced highly accurate outputs that are nearly
indistinguishable from the Original results. Consequently, our
methods successfully implicated the same genomic regions with
genome-wide significance found by Original, represented by the
strongest associated single-nucleotide polymorphisms (SNPs)
rs7637813 on chromosome 3 (nominal P= 7.2 × 10−8) and
rs112243036 on chromosome 6 (P= 7.0 × 10−21). Notably, both
these SNPs are in close vicinity to the two strongest signals
reported by the original study31: rs1015164 at a distance of 9 kbp
and rs59440261 at a distance of 42 kbp, respectively. The former
is found in the major histocompatibility complex region, and the
latter is near the CCR5 gene; both have established connections to
HIV-1 disease progression31. Although the two previous SNPs
were not available in our data subset to be analyzed, we
reasonably posit that our findings capture the same association
signals as in the original study, related through linkage
disequilibrium. Regardless, we emphasize that our federated-
analysis results closely replicated the centralized analysis of the
same dataset we used in our analysis.

In contrast, the Meta-analysis approach, although successfully
applied in many studies, severely underperformed in our
experiments by reporting numerous associations that are likely
spurious. We believe this observation highlights the limitation of
meta-analyses when the sample sizes of individual datasets are
limited. Similarly, the Independent approach obtained noisy
results, which was further compounded by the issue of limited
statistical power (for results obtained by every DP, see

Supplementary Fig. 4). We complement these comparisons with
Table 1 that quantifies the error in the reported negative
logarithm of P value (−log10ðPÞ), as well as the regression
weights (w), for all of the considered approaches compared to
Original. We observed that FAMHE-FastGWAS yields an average
absolute error always smaller than 10−2, which ensures accurate
identification of association signals. FAMHE-GWAS further
reduces the error by roughly a factor of three to obtain even
more accurate results. Whereas Meta-analysis and Independent
approaches result in considerably larger errors.

FAMHE scales efficiently in all dimensions: number of DPs,
samples, and variants (Fig. 4). As displayed by Fig. 4a, FAMHE’s
runtime decreases when the workload is distributed among more
DPs, and it is below 1 h for a GWAS jointly performed by 12 DPs
on more than 4 million variants with FAMHE-FastGWAS. It also
shows that in a wide-area network, where the bandwidth is halved
(from 1 Gbps to 500Mbps) and the delay doubled (from 20 to
40 ms), FAMHE execution time increases by a maximum of 26%
over all experiments. FAMHE’s execution time grows linearly
with the number of patients (or samples) and variants (Fig. 4c, d).
In all experiments, the communication accounts for between 4
and 55% of FAMHE’s total execution time. As described in the
“Methods” section, FAMHE computes the P values of multiple
(between 512 and 8192) variants in parallel, due to the SIMD
property of the crypto scheme and is further parallelized among
the DPs and by multithreading at each DP. FAMHE is therefore
highly parallelizable, i.e., doubling the number of available
threads would almost halve the execution time. Finally,
FAMHE-GWAS, which performs exact linear regression, further
reduces the error (by a factor of 3 × compared to FAMHE-
FastGWAS), but its execution times are generally higher than
FAMHE-FastGWAS.

These results demonstrate the ability of FAMHE to enable the
execution of FA workflows on data held by large numbers of DPs
who keep their data locally while allowing full privacy with no
loss of accuracy. To our knowledge, no other existing approaches
achieve all of these properties: the FA approaches that share
intermediate analysis results in cleartext among the DPs offer
limited privacy protection or when used together with diffP
techniques to mitigate leakage, they sacrifice accuracy. Meta-
analysis approaches yield imprecise results compared to joint
analysis, especially in settings where each DP has access to small
cohorts, as we have shown. According to our estimates,
centralized HE-based solutions have execution times that are
1–3 orders of magnitude greater than FAMHE due to the
overhead of centralized computation, as well as compute-
intensive cryptographic operations required by centralized HE
(e.g., bootstrapping). Finally, SMC approaches, although an
alternative for a small network of 2-4 DPs, have difficulty
supporting a large number of DPs, due to their high commu-
nication overhead. Note that communication of SMC scales with
the combined size of all datasets, whereas FAMHE shares only
aggregate-level data, thus vastly reducing the communication
burden. We provide a more detailed discussion of existing
solutions and estimates of their computational costs in Supple-
mentary Note 5.

Discussion
Here, we have demonstrated that efficient privacy-preserving feder-
ated-analysis workflows for complex biomedical tasks are attainable.
Our efficient solutions for survival analysis and GWAS, based on our
paradigm FAMHE, accurately reproduced published peer-reviewed
studies while keeping the dataset distributed across multiple sites and
ensuring that the shared intermediate data do not leak any private
information. Alternative approaches based on meta-analysis or
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independent analysis of each dataset led to noisy results in our
experiments, illustrating the benefits of our federated solutions. The
fact that FAMHE led to practical federated algorithms for both the
statistical calculations required by Kaplan–Meier curves and the
large-scale regression tasks of GWAS reflects the ability of FAMHE

to enable a wide range of other analyses in biomedical research, such
as cohort exploration and the training and evaluation of disease risk
prediction models.

Conceptually, FAMHE represents a novel approach to FA; it
has not been previously explored for complex biomedical tasks.

Fig. 3 Comparison of the GWAS results obtained with different approaches with 12 DPs (when applicable). a Original is considered as the ground truth
and is obtained on a centralized cleartext dataset by relying on the PLINK36 software. Panels (c) and (e) are also obtained with PLINK (see “Methods”
section and Supplementary Fig. 4). Panels (b) and (d) are the results obtained with FAMHE-GWAS and FAMHE-FastGWAS, respectively. In the original
study and in our secure approach, genome-wide signals of association (log10(P) < 5 × 10−7, dotted line) were observed on chromosomes 6 and 3. The P
values shown are nominal values without multiple testing correction and are obtained using standard two-sided t tests for testing whether the linear
regression coefficient associated with a variant is nonzero.

Table 1 Absolute averaged error on the logarithm of the P values (−log10(P)) and on the model weights (w) between Original,
Independent and federated approaches.

Independent Meta-analysis FAMHE-FastGWAS FAMHE-GWAS

−log10(P) w −log10(P) w −log10(P) w −log10(P) w

3 DPs
All 0.369 0.04 0.448 0.04 6.7e−3 1.5e−3 2.72e−3 7.3e−4

Peaks 4.14 0.055 7.9 0.19 0.71 6.61e−3 0.1392 1.88e−7

6 DPs
All 0.409 0.0665 0.45 0.041 8.3e−3 1.61e−3 2.78e−3 7.4e−4

Peaks 4.86 0.12 7.95 0.195 0.82 6.63e−3 0.1393 2.3e−7

12 DPs
All 0.425 0.104 0.453 0.048 9e−3 1.63e−3 2.79e−3 7.7e−4

Peaks 6.619 0.126 7.99 0.197 0.848 6.69e−3 0.1399 3.6e−7

For each number of data providers, we report the error averaged over all positions and the errors on the peaks identified with Original (see Fig. 3a). The P values shown are nominal values without
multiple testing correction and are obtained using standard two-sided t tests for testing whether the linear regression coefficient associated with a variant is nonzero.
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FAMHE combines the strengths of both conventional federated-
learning approaches and cryptographic frameworks for secure
computation. Like federated learning, FAMHE scales to large
numbers of DPs and enables noninteractive local computation
over each institution’s dataset (available locally in cleartext),
which approach minimizes the computational and communica-
tion burdens that cryptographic solutions17,18,21–23,37 typically
suffer from. However, FAMHE draws from the cryptographic
framework of MHE to enable secure aggregation and local
computation of intermediate results in an encrypted form. This
approach departs from the existing federated-learning
solutions2,3,7,15,16,20 that largely rely on data obfuscation to
mitigate leakage in the intermediate data shared among the
institutions. Our approach thus provides more rigorous privacy
protection. In other words, in FAMHE, accuracy is traded off
only with performance, similarly to nonsecure federated
approaches, but differently from obfuscation-based solutions,
FAMHE’s security is absolute. We summarize our comparison of
FAMHE with existing works in Supplementary Table 1, Supple-
mentary Notes 2 and 5, and we refer to the “Methods” section for
more details.

The fact that FAMHE shares only encrypted data among the
DPs have important implications for its suitability to regulatory
compliance and its potential to catalyze future efforts for multi-
centric biomedical studies. In recent work, it has been established
by privacy law experts that data processed using MHE can be
considered “anonymous” data under the GDPR12. Anonymous
data, which refers to data that require unreasonable efforts to re-
identify the source individuals, lies outside the jurisdiction of
GDPR. Therefore, our approach has the potential to significantly
simplify the requirements for contractual agreements and the
obligations of data controllers with respect to regulations, such as
GDPR, that often hinder multicentric medical studies. In

contrast, existing FA solutions, where the intermediate results are
openly shared, present more complicated paths toward com-
pliance, as intermediate results could still be considered personal
data6,13,14.

In cases where the potential leakage of privacy in the final
output of the federated analysis is a concern, diffP techniques can
be easily incorporated into FAMHE by adding a small pertur-
bation to the final results before they are revealed. In contrast to
the conventional federated-learning approach, which requires
each DP to perturb its local results before aggregating them with
other parties, FAMHE enables the DPs to keep the local results
encrypted and reveals only the final aggregated results. Therefore,
FAMHE can use a smaller amount of added noise and achieve the
same level of privacy38. Notably, the choices of diffP parameters
suitable for analyses with a high-dimensional output, such as
GWAS, can be challenging and needs to be further explored.

There are several directions in which our work could be
extended to facilitate the adoption of FAMHE. Although we
reproduced published studies by distributing a pooled dataset
across a group of DPs, jointly analyzing multiple datasets by using
FAMHE that could not be combined otherwise would be a
challenging yet important milestone for this endeavor. Our work
demonstrates FAMHE’s applicability on a reliable baseline and
constitutes an important and necessary step towards building
trust in our technology and fostering its adoption, thus enabling
its use for the discovery of new scientific insights. Furthermore,
we will extend the capabilities of FAMHE by developing addi-
tional protocols for a broader range of standard analysis tools and
ML algorithms in biomedical research (e.g., proportional-hazard
regression models). A key step in this direction is to make our
implementation of FAMHE easily configurable by practitioners
for their own applications. Specifically, connecting FAMHE to
existing user-friendly platforms such as MedCo39 to make it

Fig. 4 FAMHE scaling. a FAMHE’s scaling with the number of data providers, b with the size of the dataset, and c with the number of variants considered in
the GWAS. Panel (d) is the legend box for (a–c). In (a), we also observe the effect of a reduced available bandwidth (from 1 Gbps to 500Mbps) and
increased communication delay (from 20 to 40ms) on FAMHE’s execution time. The original dataset containing 1857 samples and four million variants is
evenly split among the data providers. By default, the number of DPs is fixed to 6.
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widely available would help empower the increasing efforts to
launch multicentric medical studies and accelerate scientific
discoveries.

Methods
Here, we describe FAMHE’s system and threat model, before detailing the
execution of the privacy-preserving pipelines for survival curves and GWAS stu-
dies. Finally, we detail our experimental settings and explain how diffP can be
ensured on the final result in FAMHE.

System and Threat Model. FAMHE supports a network of mutually distrustful
medical institutions that act as DPs and hold subjects’ records. An authorized
querier (see Fig. 1) can run queries, without threatening the data confidentiality
and subjects’ privacy. The DPs and the querier are assumed to follow the protocol
and to provide correct inputs. All-but-one DPs can be dishonest, i.e., they can try to
infer information about other DPs by using the protocol’s outputs. We assume that
the DPs are available during the complete execution of a computation. However, to
account for unresponsive DPs, FAMHE can use a threshold-encryption scheme,
where the DPs secret-share40 their secret keys, thus enabling a subset of the DPs to
perform the cryptographic interactive protocols.

FAMHE can be extended to withstand malicious behaviors. A malicious DP can
try to disrupt the federated collaboration process, i.e., by performing wrong
computations or inputting wrong results. This can be partially mitigated by
requiring the DPs to publish transcripts of their computations and to produce zero-
knowledge proofs of range41, thus constraining the DPs’ possible inputs. Also, the
querier can try to infer information about a DP’s local data from the final result.
FAMHE can mitigate this inference attack by limiting the number of requests that
a querier can perform and by adding noise to the final result (see “Discussion”) to
achieve diffP guarantees. Learning how to select the privacy parameters and to
design a generic solution to apply these techniques for the wide range of
applications enabled by FAMHE is part of future work.

FAMHE’s optimization techniques. Here, we describe the main optimization
techniques introduced in FAMHE. We then explain how these optimizations are
used in FAMHE to compute survival curves and GWAS.

In order to parallelize and efficiently perform computationally intensive tasks,
we rely on the SIMD property of the underlying cryptographic scheme and on edge
computing, i.e., the computations are pushed to the DPs. In MHE, a ciphertext
encrypts a vector of N values, and any operation (i.e., addition, multiplication, and
rotation) performed on the ciphertext is executed on all the values simultaneously,
i.e., SIMD. After a certain number of operations, the ciphertext needs to be
refreshed, i.e., bootstrapped. A rotation is, in terms of computation complexity, one
order of magnitude more expensive than an addition/multiplication, and a
bootstrapping in a centralized setting is multiple orders of magnitudes (2–4) more
expensive than any other operation. As the security parameters determine how
many operations can be performed before a ciphertext needs to be bootstrapped,
conservative parameters that incur large ciphertexts, but enable more operations
without bootstrap are usually required in centralized settings. This results in higher
communication and computation costs. With MHE, a ciphertext can be refreshed
by a lightweight interactive protocol that, besides its efficiency, also alleviates the
constraints on the cryptographic parameters and enables FAMHE to ensure a high
level of security and still use smaller ciphertexts. For example, we show in Fig. 2b
how FAMHE’s execution time to compute a survival curve increases when
doubling the size of a ciphertext (from 4096 to 8192 slots).

As discussed in the privacy-preserving pipeline for GWAS, in the case of
GWAS, FAMHE efficiently performs multiple subsequent large-dimension matrix
operations (Supplementary Fig. 2) by optimizing the data packing (Supplementary
Fig. 3) to perform several multiplications in parallel and to minimize the number of
transformations required on the ciphertexts. FAMHE builds on the DPs’ ability to
compute on their cleartext local data and combine them with encrypted data, thus
reducing the overall computation complexity. GWAS also requires non-polynomial
functions, e.g., the inverse of a matrix, to be evaluated on ciphertexts, which is not
directly applicable in HE. In FAMHE, these non-polynomial functions are
efficiently approximated by relying on Chebyshev polynomials. We chose to rely on
Chebyshev polynomials instead of on least-square polynomial approximations in
order to minimize the maximum approximation error hence avoid that the
function diverges on specific inputs. This technique has been shown to accurately
approximate non-polynomial functions in the training of generalized models24 and
neural networks42, which further shows the generality and applicability of our
proposed framework.

FAMHE combines the aforementioned features to efficiently perform FA with
encrypted data. In GWAS, for example, we rely on the Gauss–Jordan (GJ)
method43 to compute the inverse of the covariance matrix. We chose this algorithm
as it can be efficiently executed by relying on the aforementioned features: row
operations can be efficiently parallelized with SIMD and divisions are replaced by
polynomial approximations.

Privacy-preserving pipeline for survival curves. Survival curves are generally
estimated with the Kaplan–Meier estimator44

ŜðtÞ ¼
Y

j; tj ≤T

1� dj
nj

 !
; ð1Þ

where tj is a time when at least one event has occurred, dj is the number of events at
time tj, and nj is the number of individuals known to have survived (or at risk) just
before the time point tj. We show in Fig. 2a the exact replica of the survival curve
presented by Samstein et al.30 produced by our distributed and privacy-preserving
computation. In a survival curve, each step down is the occurrence of an event. The
ticks indicate the presence of censored patients, i.e., patients who withdrew from
the study. The number of censored patients at time tj is indicated by cj. As shown in
Supplementary Fig. 1, to compute this curve, each DP i locally computes, encodes,
and encrypts a vector of the form nðiÞ0 ; cðiÞ0 ; dðiÞ0 ; :::; nðiÞT ; cðiÞT ; dðiÞT containing the values

nðiÞj ; cðiÞj ; dðiÞj corresponding to each time point tj for tj= 0, . . . , T. All the DPs’
vectors are then collectively aggregated. The encryption of the final result is then
collectively switched from the collective public key to the querier’s public key that
can decrypt the result with its secret key and generate the curve following Eq. (1).

Privacy-preserving pipeline for GWAS. We briefly describe the genome-wide
association-study workflow before explaining how we perform it in a federated and
privacy-preserving manner. We conclude by detailing how we obtained our
baseline GWAS results in “Results” with the PLINK software.

We consider a dataset of p samples, i.e., patients. Each patient is described by f
features or covariates (with indexes 1 to f). We list all recurrent symbols and
acronyms in Supplementary Table 3. Hence, we have a covariates matrix
X 2 Rðp ´ f Þ . Each patient also has a phenotype or label, i.e., y 2 Rðp ´ 1Þ and v
variant values, i.e., one for each variant considered in the association test. The v
variant values for all p patients form another matrix V 2 Rðp´ vÞ . To perform the
GWAS, for each variant i, the matrix X0 ¼ ½1;X;V½:; i��2 Rðp´ ðfþ2ÞÞ, i.e., the matrix
X is augmented by a column of 1s (intercept) and the column of one variant i, is

constructed. The vector w 2 Rðfþ2Þ is then obtained by w ¼ ðX0TX0Þð�1Þ
X

0Ty. The
P value for variant i is then obtained with

P ¼ 2 � pnorm � w½f þ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEð ðy; y0Þ � ðX0TX0Þð�1Þ½f þ 2; f þ 2�

q

�������

�������

0
B@

1
CA;

where pnorm is the cumulative distribution function of the standard normal
distribution, w[f+ 2] is the weight corresponding to the variant, MSEðy; y0Þ is the
mean-squared error obtained from the prediction y0 computed with w, and

ðX0TX0Þð�1Þ½f þ 2; f þ 2� corresponds to the standard error of the variant weight.
Although this computation has to be performed for each variant i, we remark

that X is common to all variants. In order to compute ðXTXÞð�1Þ
only once before

adjusting it for each variant and thus obtain ðX0TX0Þð�1Þ
, we rely on the

Shermann–Morrison formula45 and the method presented in the report on
cryptographic and privacy-preserving primitives (p. 52) of the WITDOM
European project46. We describe this approach, i.e., FAMHE-GWAS, in
Supplementary Fig. 2. Each DPi has a subset of pi patients. For efficiency, the DPs
are organized in a tree structure and one DP is chosen as the root of the tree DPR.
We remark that, as any exchanged information is collectively encrypted, this does
not have any security implications. In a CA, each DP encrypts (E()) its local result
with the collective key, aggregates its children DPs encrypted results with its
encrypted local results, and sends the sum to its parent DP such that DPR obtains
the encrypted result aggregated among all DPs. We recall here that with the
homomorphic-encryption scheme used, vectors of values can be encrypted in one
ciphertext and that any operation performed on a ciphertext is simultaneously
performed on all vector elements, i.e., SIMD. We rely on this property to parallelize
the operations at multiple levels: among the DPs, among the threads in each DP
and among the values in the ciphertexts.

We rely on the GJ method43 to compute the inverse of the encrypted covariance
matrix. We chose this algorithm as it requires only row operations, which can be
efficiently performed with SIMD. The only operation that is not directly applicable
in HE is the division that we approximated with a Chebyshev polynomial. Note
that we avoid any other division in the protocol by pushing them to the last step
that is executed by the querier Q after decryption. In Supplementary Fig. 2, we keep
1/c until decryption.

In Supplementary Fig. 2, we describe how we further reduce the computation
overhead by obtaining the covariates’ weights w0 with a lightweight federated
gradient descent (FGD), by reporting the obtained covariates’ contributions in the
phenotype y, which becomes y″. To compute the P value, we then compute only

one element of the covariance inverse matrix ðX0TX0Þð�1Þ½f þ 2; f þ 2�, instead of
the entire inverse. To perform the FGD, we follow the method described by
Froelicher et al.24, without disclosing any intermediate values.

We describe in Supplementary Fig. 3 how the (main) values used in both
protocols are packed to optimize the communication and the number of required
operations (multiplications, rotations). We perform permutations, duplications,
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and rotations on cleartext data that are held by the DPs (indicated in orange in
Supplementary Figure 3); and we avoid, as much as possible, the operations on
encrypted vectors. Note that rotations on ciphertexts are almost one order of
magnitude slower than multiplications or additions and should be avoided when
possible. As ciphertexts have to be aggregated among DPs, a tradeoff has to be
found between computation cost (e.g., rotations) and data packing, as a smaller
packing density would require the exchange of more ciphertexts.

In both protocols, all operations for v variants are executed in parallel, due to the
ciphertext packing (SIMD). For a 128-bit security level, the computations are
performed simultaneously for 512 variants with FAMHE-GWAS and for 8192 with
FAMHE-FastGWAS. These operations are further parallelized due to multithreading
and to the distribution of the workload among the DPs. We highlight (in bold) the
main steps and aggregated values in the protocol and note that DPs’ local data are in
cleartext, whereas all exchanged data are collectively encrypted (E()).

Baseline computations with PLINK. As explained in the “Results” section, we relied
on the PLINK software to obtain our baseline results for the (i) Original approach in
which GWAS is computed on the entire centralized dataset, (ii) the Independent
approach in which each DP performs the GWAS on its own subset of the data, and
(iii) for the Meta-analysis in which the DPs perform the GWAS on their local data
before combining their results. For (i) and (ii), we relied on PLINK 2.0 and its linear
regression (–glm option)-based association test. For (iii), we relied on PLINK 1.9 and
used the weighted-Z test approach to perform the meta-analysis.

Experimental settings. We implemented our solutions by building on top of
Lattigo33, an open-source Go library for lattice-based cryptography, and Onet47, an
open-source Go library for building decentralized systems. The communication
between DPs is done through TCP, with secure channels (by using TLS). We
evaluate our prototype on an emulated realistic network, with a bandwidth of
1 Gbps and a delay of 20 ms between every two nodes. We deploy our solution on
12 Linux machines with Intel Xeon E5-2680 v3 CPUs running at 2.5 GHz with 24
threads on 12 cores and 256 GB of RAM, on which we evenly distribute the DPs.
We choose security parameters to always achieve a security level of 128 bits.

Differentially private mechanism. DiffP is a privacy-preserving approach, intro-
duced by Dwork26, for reporting results on statistical datasets. This approach guar-
antees that a given randomized statistic, MðDSÞ ¼ R, computed on a dataset DS,
behaves similarly when computed on a neighbor dataset DS0 that differs from DS in
exactly one element. More formally, (ϵ, δ)-diffP48 is defined by
Pr MðDSÞ ¼ R½ �≤ expðϵÞ � Pr MðDS0Þ ¼ R½ � þ δ, where ϵ and δ are privacy para-
meters: the closer to 0 they are, the higher the privacy level is. (ϵ, δ)-diffP is often
achieved by adding noise to the output of a function f(DS). This noise can be drawn
from the Laplace distribution with mean 0 and scale Δf

ϵ , where Δf, the sensitivity of the
original real-valued function f, is defined by Δf ¼ maxD;D0 jjf ðDSÞ � f ðDS0Þjj1. Other
mechanisms, e.g., relying on a Gaussian distribution, were also proposed26,49.

As explained before, FAMHE can enable the participants to agree on a privacy
level by choosing whether to yield exact or obfuscated, i.e., differentially private
results, to the querier. We also note that our solution would then enable the
obfuscation of only the final result, i.e., the noise can be added before the final
decryption, and all the previous steps can be executed with exact values as no
intermediate value is decrypted. This is a notable improvement with respect to
existing federated-learning solutions, based on diffP38, in which the noise has to be
added by each DP at each iteration of the training. In the solution by Kim et al.38,
each DP perturbs its locally computed gradient such that the aggregated
perturbation, obtained when the DPs aggregate (combine) their locally updated
model, is ϵ-differentially private. This is achieved by having each DP generate and
add a partial noise such that, when aggregated, the total noise follows the Laplace
distribution. The noise magnitude is determined by the sensitivity of the computed
function and this sensitivity is similar for each DP output and for the aggregated
final result. This means that, as the intermediate values remain encrypted in
FAMHE, a noise with the same magnitude can be added only once on the final
result, thus ensuring the same level of privacy with a lower distortion of the result.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We replicated two existing medical studies, Samstein et al.30 and McLaren et al.31. The
original data used by Samstein et al. and in our work is available at http://
www.cbioportal.org/study/summary?id=tmb_mskcc_2018. The data used by McLaren
et al. and in our work are protected and under the responsibility of the authors of the
original study. Interested researchers should contact these authors if they wish to access
the dataset.

Code availability
Our solution partially relies on open-source software and public libraries (i.e., the
cryptographic library Lattigo33 and the decentralized systems library Onet47). Our code is

currently not publicly available as its license does not allow for open-source
redistribution. Pseudocode of the used algorithms and protocols is provided for
completeness in the “Methods” section Upon request sent to the corresponding
author(s), we can provide binaries that, in combination with open-source resources, can
be used for the sole purpose of verifying and reproducing the experiments in the
manuscript.
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