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BSTRACT 

dvances in genomics are increasingly depending 

pon the ability to anal yze lar ge and diver se genomic 

ata collections, which are often difficult to amass 

ue to privacy concerns. Recent works have shown 

hat it is possible to jointly analyze datasets held 

 y m ultiple parties, while pr o v ably preserving the 

rivacy of each party’s dataset using cryptographic 

echniques. Ho we ver, these tools ha ve been chal- 
enging to use in practice due to the complexities 

f the required setup and coordination among the 

arties. We present sfkit , a secure and federated 

oolkit for collaborative genomic studies, to allow 

roups of collaborators to easily perform joint analy- 
es of their datasets without compromising privacy. 
fkit consists of a web server and a command- 

ine interface, which together support a range of 
se cases including both auto-configured and user- 
upplied computational environments. sfkit pro- 
ides collaborative workflows for the essential tasks 

f genome-wide association study (GWAS) and prin- 
ipal component analysis (PCA). We envision sfkit 

ecoming a one-stop server for secure collaborative 

ools for a broad range of genomic analyses. sfkit 

s open-source and available at: https://sfkit.org . 
a
c
R
y
b

p
m
d
f
v
l

 To whom correspondence should be addressed. Tel: +1 617 812 9388; Email: hh
orrespondence may also be addressed to Bonnie Berger. Tel: +1 617 253 4986; 

 The authors wish it to be known that, in their opinion, the first two authors should b

C The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Ac
his is an Open Access article distributed under the terms of the Creati v e Common
ermits unrestricted reuse, distribution, and reproduction in any medium, provided th

uest on 02 July 2023
RAPHICAL ABSTRACT 

NTRODUCTION 

ata sharing has been a key driving force of progress 
n genomics. Sharing data across or ganizations allo ws re- 
earchers to analyze data from larger and more di v erse co- 
orts than what they can individually obtain, which is cru- 
ial for extracting novel biomedical insights ( 1 , 2 ). How- 
 v er, biomedical data sharing has become increasingly dif- 
cult due to growing concerns about data privacy as well 
s stricter polices and regulations resulting from these con- 
erns (e.g., the European Union’s General Data Protection 

egula tion) ( 3 ). Crea ting tools to facilitate the joint anal- 
sis of private data across isolated repositories would thus 
e a great boon for biomedical research. 
An emerging field of privacy-preserving data analysis 

romises tools for jointl y anal yzing private datasets held by 

 ultiple parties w hile ensuring the privacy of each party’s 
ataset ( 3–6 ). Methods based on crypto gra phic frame wor ks 

or secure computation are especially promising as they pro- 
ide a formal privacy guarantee that the participating col- 
aborators do not gain information about datasets held by 
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other parties, except the final joint analysis results. Recent
wor ks hav e introduced algorithms built upon these tech-
niques for a range of standard genomic analysis tasks, in-
cluding genome-wide association studies (GWAS) and prin-
cipal component analysis (PCA), that can efficiently scale to
large datasets including hundreds of thousands of individ-
uals ( 7–10 ). 

Howe v er, le v eraging these modern tools for collaboration
in real biomedical studies has remained challenging. Ap-
plying these methods r equir e a good knowledge of under-
l ying crypto gra phic techniques, w hich many biomedical re-
searchers may not immediately possess. Even with such a
knowledge, configuring the tools and coordinating interac-
ti v e computation across a distributed network of comput-
ers spanning different organizations would still r equir e sub-
stantial time and effort. 

To address these challenges, we de v eloped our w e b server
sfkit (Secure and Federated toolKIT for collaborati v e ge-
nomic studies), which streamlines the deployment of secure
collaboration tools to broadly enable groups of r esear chers
to easily perform joint analyses of their genomic datasets
without the need to share any priva te da ta among them.
sfkit pr ovides pr ova bly-secure colla borative workflows
for GWAS and population structure analysis (based on
PCA), both built upon state-of-the-art crypto gra phic tech-
niques ( 7–10 ). The design of our w e b server allows similar
methods being de v eloped for a growing range of genomic
analysis tasks to be easily incorporated into our server. 

In the following, we summarize the system design of
sfkit and highlight its key features. We then illustrate
the utility and ease-of-use of sfkit for collaborati v e
GWAS and PCA in a range of different settings and
datasets. sfkit r epr esents a key step towards broaden-
ing r esear chers’ access to secure collaboration tools for ge-
nomics and may help unlock various joint studies that pre-
viously could not be realized. 

MATERIALS AND METHODS 

System ov ervie w 

The sfkit w e b server provides a common w e b interface
through which users can cr eate, join, configur e and run col-
laborati v e analyses with other users on a collection of pri-
va te genomic da tasets based on a chosen study workflow
(Figure 1 ). The w e bsite implements a range of features, in-
cluding project bulletin board, chat functions, study pa-
r ameter configur a tion and result sharing / visualiza tion, all
aimed at streamlining the application of collaborati v e anal-
ysis tools that r equir e comple x coor dination among multi-
ple users. 

To cover a broad range of usage scenarios, sfkit of-
fers two utilization modes: (i) auto-configured and (ii) user-
configured . 

In the auto-configured mode, the server automatically cre-
ates and configures Google Cloud Platform (GCP) virtual
machines (VMs) on behalf of users, within the respecti v e
user-contr olled GCP pr ojects gi v en a minimal set of per-
missions. This greatly simplifies the setup of networking and
computing environments to be used for the joint analysis. 

In contrast, the user-configured mode allows users who
wish to dir ectly configur e the machines to provide their own
private (or protected) computing environments. To help
streamline this latter use case, sfkit additionally provides
a user-friendly command-line interface (CLI), which the
users can utilize on their machines to communicate with the
w e b server and launch the analysis client program, which
in turn communicates with other users’ clients that are exe-
cuted via the same CLI. 

Security 

A key feature of sfkit is the rigorous privacy protection it
provides to each user by le v eraging state-of-the-art crypto-
graphic tools based on the frame wor ks of secure multiparty
computation (MPC) and homomorphic encryption (HE),
both of which enable computation over some form of en-
crypted information. Throughout the joint analysis work-
flow, data confidentiality is maintained for each user at all
times, except what can be inferred based on the final analysis
r esults. Curr ent workflows operate under the standard semi-
honest security model, which assumes that the client pro-
grams faithfully follow the protocol as gi v en and aims only
to pre v ent leakage of pri va te informa tion in any intermedi-
a te da ta tha t is visible to each user during the study execu-
tion. Additionally, the workflows employ server-aided pre-
processing for computational efficiency, whereby an auxil-
iary party distributes correlated randomness to the users to
accelerate certain crypto gra phic opera tions. W hen needed,
sfkit automa tically crea tes a stud y-specific GCP VM for
this role, shown as ‘Coordinator VM’ in Figure 1 . Both the
w e b server and the auxiliary VM only facilitate the setup
and execution of analysis protocols without receiving any
priva te da ta from the users. By default, sfkit workflows
provide a 128-bit security le v el, which can be adjusted if de-
sir ed. All our softwar e modules –– the w e bsite, CLI, analysis
algorithms, and crypto gra phic libraries (e.g. Lattigo, avail-
able a t https://github.com/tuneinsight/la ttigo ) –– are open-
sour ce, which ensur es that our tools are fully transparent.
Other methods based on alternati v e security models (e.g.,
malicious) are also compatible with our w e b server. Further
technical details of the security of each analysis workflow
can be found in the original r efer ences ( 7–10 ). 

Collaborative analysis workflows 

sfkit currently supports the collaborati v e e xecution of the
following analysis tasks: 

Genome-wide association study (GWAS). GWAS is an es-
sential study designed for identifying genetic variants that
ar e corr elated with a phenotype of interest, such as disease
status or other quantitati v e biological traits. Analyzing data
from a large cohort is crucial for detecting variants that
ar e rar e or weakly associated with the trait. The following
sfkit workflo ws allo w a group of collaborators to perform
an end-to-end GWAS analysis jointly over their datasets,
while keeping the input datasets private. 

• MPC-GWAS: a collaborati v e GWAS protocol based on
secure multiparty computation (MPC) ( 9 ). Each user’s
input dataset (consisting of genotypes , phenotypes , and

https://github.com/tuneinsight/lattigo
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A B C

D

Figure 1. Ov ervie w of sfkit workflow. We illustrate the key steps of an e xample wor kflow wherein two users securely conduct a joint study using sfkit . 
( A ) Using the sfkit w e b server, the users create a joint study, set analysis parameters, and share (non-private) information about the dataset (e.g., 
da taset sizes). Cha t fea ture is available to facilita te the communica tion. ( B ) The users opt to use either their personal machines in user-configur ed mode 
or automatically instantiated virtual machines (VMs) in their Google Cloud Platform (GCP) projects in auto-configured mode. The sfkit command- 
line interface (CLI) helps streamline the setup in user-configured mode. ( C ) sfkit then securely coordinates and executes the study, with minimal user 
assistance in user-configured mode if needed (e.g., to launch the process via the CLI). ( D ) After completion of the study, the users retrie v e the joint analysis 
results and their visualization from the w e b server. 
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covariates for a group of individuals) is split into multi- 
ple encrypted copies of the dataset, which are then dis- 
tributed to collaborators’ machines as input to the joint 
analysis. 
SF-GWAS: a secure and federated (SF) protocol for col- 
laborati v e GWAS ( 7 , 8 ) based on a hybrid of MPC and
multiparty homomorphic encryption (MHE) techniques, 
which ensures that each input dataset remains locally 

with the data holder and only smaller amounts of inter- 
mediate results are exchanged in an encrypted form. 

Both workflows implement a standard GWAS pipeline, 
ncluding quality control filters (for missing data, allele 
requencies, and Hardy-Weinberg equilibrium), population 

tra tifica tion analysis (based on PCA), and association tests 
sing a linear model of the trait based on allele dosages (i.e., 
ochran-Armitage test for binary traits). Other workflows 
ased on logistic or linear mixed models will be supported 

n a subsequent version. 
We expect the MPC-GWAS and SF-GWAS workflows 

o be useful in different settings: MPC-GWAS allows each 

ser to provide only an encrypted version of their dataset 
s input to the sfkit workflow, simplifying trust assump- 
ions. Although SF-GWAS r equir es that user’s original in- 
ut dataset be available on the user’s machine, this allows 
he sfkit protocol to le v erage efficient local computation 

n the unencrypted data to greatly reduce runtime require- 
ents ( 7 ). 

rincipal component analysis (PCA). PCA is a standard 

lgorithm for dimensionality reduction, commonly applied 

n genetic studies to identify the population structure of a 

i v en cohort. Coor dinates of each indi vidual in a reduced
pace output by PCA are thought to r epr esent their genetic 
ncestry in relation to other individuals in the dataset. This 
nformation is useful in various settings, e.g., for defining 
tudy cohorts or constructing additional covaria te fea tures 
n GWAS. 

SF-PCA: a secure and federated (SF) protocol for a group 

of users to perform a PCA jointly on their private datasets 
to obtain a desired number of top principal components 
(PCs) ( 10 ). This corresponds to one of the steps in the 
GWAS w orkflows abo ve, here pro vided as a standalone 
tool. Each user provides a matrix with the same number 
of columns (features) as the local input dataset. 

sage process 

fkit secur ely ex ecutes collaborati v e wor kflows in four 
ain steps outlined below. Note that in the auto-configured 

ode, users only need to create the study and grant sfkit 

imited access to their GCP project; all subsequent steps are 
rchestra ted and automa tically executed by sfkit . In the 
ser-configured mode, users run all the steps after study cre- 
 tion and configura tion in their own (private) environment 
sing the sfkit CLI. We illustrate the workflow in Figure 1 

nd showcase sfkit ’s user interface in Supplementary Fig- 
res S3–S5. 

1) Study creation and configuration. Users navigate to the 
‘Studies’ page of the w e bsite to create a study (or join 

an existing stud y). W hen crea ting a new stud y, they 

select or enter configura tion options, stud y name, pa- 
rameters, and other study details. Once the study has 
been created, other participants can join the study ei- 
ther through a request button on the ‘Studies’ page 
(which r equir es approv al b y the stud y crea tor) or pri-
vately via an invitation button. Note that registration 

and login are optional; users can choose to create or 
join studies anonymously if they prefer. In this case, a 

unique permanent link will be provided to them so they 

can return to the stud y la ter. In both utiliza tion modes, 
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sfkit ’s w e b server stores only the stud y’s informa tion
(e.g. name and description) and analysis parameters. 

(2) Computational setup. In the auto-configured mode, users
are guided through the setup of a GCP project con-
taining their data, ensuring compatibility with sfkit .
Users enter information about their GCP project, al-
lowing sfkit to set up the networking and compute
r esour ces necessary to run the analysis. In the user-
configured mode, users provide their own networking
and compute environments (e.g. the IP address) and in-
teract with the w e b server via the sfkit CLI. 

(3) Stud y Ex ecution. The study is ex ecuted in thr ee steps: 
• K ey e x change. Participants gener ate cryptogr aphic

key pairs, with public keys being exchanged among
them via sfkit . It is important to note that the re-
quired private keys are generated locally on partici-
pants’ machines and ne v er re v ealed to any other en-
tity, including sfkit ’s w e b server. 

• Data validation. Each participant’s data is validated
locally on their machine to ensure compliance with
the appropria te forma t for the stud y and its parame-
ters. No private information is exchanged during this
step. 

• Protocol e x ecution. The chosen analysis (e.g. GWAS)
is performed using the corr esponding secur e collab-
orati v e protocol. Status updates appear on the study
page. Users can leave the page and check back peri-
odically for study completion updates. 

In auto-configured mode, users click a single button on
the w e bsite saying ‘Begin Workflow,’ which automati-
cally performs the above steps. In user-configured mode,
these steps are performed via the CLI. 

(4) Distribution and visualization of results. Upon study
completion, r esults ar e optionally visualized in sfkit ’s
w e b interface, and users can download them. For the
GWAS workflows, the results for each user consist of
global association statistics. For the PCA workflow, the
results for each user comprise a projection of their data
onto the top principal components. 

Web server implementation 

sfkit is an open-source w e b server built on
Google Cloud Platform (GCP) utilizing Flask
( https://flask.palletsprojects.com/ ), and consists of three
primary layers: w e b server, da tabase, and computa tional
machines. The w e b server layer, hosted on Google Cloud
Run, employs Jinja ( https://jinja.palletsprojects.com/ ),
Bootstr ap ( https://getbootstr ap.com/ ), and custom com-
ponents for a responsi v e user interface. The database
layer, hosted on Google Cloud Fir estor e , manages studies ,
parameters, and w e bsite functionalities. The machine layer,
on Google Cloud Compute Engine, performs computa-
tions using Python-based sfkit CLI, with core protocols
implemented in C++ and Golang. 

Command-line interface (CLI) implementation 

The CLI, de v eloped in Python, serv es as a secure bridge be-
tween the user’s compute environment and the w e b server,
facilitating core protocol execution. It uses libraries such as
PyNaCl ( https://pypi.org/project/PyNaCl/ ) for encryption;
and requests ( https://pypi.org/project/requests/ ) for server
communication. Available on PyPI, the CLI features a mod-
ular design for easy integration of new protocols. In user-
configured mode, users follow a guided process using token-
based authentication for secure connection. The CLI of-
fers a suite of commands for environment configuration, in-
put validation, and protocol initiation and execution. These
commands interact with the sfkit w e b server (hosted in
GCP) for coordination purposes, but do not send any pri-
va te da ta to the server. In auto-configured mode, the coor-
dina ting VM automa tes CLI commands, streamlining the
process while maintaining security and reliability. 

Softw ar e documentation and tutorials 

Detailed documentation and instructions for using sfkit
are pub licly availab le on two online r esour ces: the sfkit
w e bsite at https://sfkit.org/instructions and the command-
line interface documentation at https://sfkit.readthedocs.
io/ . These r esour ces provide inf ormation on how to perf orm
an analysis using sfkit , whether using the auto-configured
or user-configured mode. They also offer guidance on how to
pr epar e the input data and describe e v ery step of the work-
flow. 

RESULTS 

A case study: consortium-based collaborative analysis 

We applied sfkit workflows to analyze a collection of ge-
nomic datasets from the eMERGE consortium, which in-
cluded a total of 31,292 individuals split across seven data
collection sites (Supplementary Note 1). To demonstrate a
collaborati v e study, we simulated a user for each site with
access to the corresponding data subset. In the following,
we describe the results from the perspecti v e of these users. 

The users utilized sfkit ’s auto-configured mode, in
which the server automa tically crea ted a virtual machine
with 16 CPUs and 128 GB RAM on GCP for each user.
For the GWAS analysis, the users adopted a common set
of 38,040,168 imputed biallelic SNPs and 9 covariate fea-
tures to include in the analysis, and chose body-mass in-
dex (BMI) as the target phenotype. More details about the
dataset and the analysis parameters can be found in Sup-
plementary Note 1. 

After the automatic execution of the SF-GWAS workflow
using sfkit , each participating user obtained association
sta tistics tha t are nearly identical to the equivalent stud y ex-
ecuted on the pooled dataset (Figure 2 A). The top two loci
with the strongest association signals identified by sfkit
were co-located with SLC25A48 and FTO genes, recapitu-
lating pr eviously r eported genetic factors of obesity ( 11 , 12 ).
In contrast, a single user analyzing their own dataset (com-
prising 1827 samples) obtained far fewer significant associ-
ations (one with P < 5 × 10 

−8 , compared to 73 for sfkit ),
which illustrates the increased power of collaborati v e anal-
ysis enabled by sfkit (Figure 2 A). Meta-analysis led to
substantially different results compared to the pooled anal-
ysis in our setting (Supplementary Figure S1). 

Similarly for PCA, the users obtained joint analysis re-
sults using sfkit that were highly consistent with a cen-

https://flask.palletsprojects.com/
https://jinja.palletsprojects.com/
https://getbootstrap.com/
https://pypi.org/project/PyNaCl/
https://pypi.org/project/requests/
https://sfkit.org/instructions
https://sfkit.readthedocs.io/
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the top two principal components (PCs) obtained by different approaches, 
with examples shown for users 2 and 4 (see Supplementary Figure S2 for 
the remaining users). The combined results of all users confirm that with 
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ralized study (Figure 2 B). The top two PCs re v ealed the

tructure of differing ancestry backgrounds among individ- 
als in the cohort. Note that each user obtains the projec- 
ions of only the individuals in their local dataset onto the 
op PCs (Figure 2 B). sfkit allows the use of PCs that are 
ointly constructed across the users, which is otherwise not 
ossible if the datasets cannot be pooled. These projections 
an in turn be used as covariates in GWAS to correct for 
opula tion stra tifica tion. 
sfkit greatly simplifies the setup of the joint analysis 

mong se v en parties down to a small number of interac- 
ions on the w e bsite and deploys the computational proto- 
ol in less than fiv e minutes. The entire GWAS computation 

s executed in seventeen hours and PCA in 3 hours (Supple- 
entary Table S1). 

eproducible tutorial demonstration on a public dataset 

e additionally demonstrate all three workflows of sfkit 

n a public dataset (1000 Genomes Project; Supplementary 

ote 1), which can be reproduced following our step-by- 
tep tutorial on the w e b server. For GWAS, we simulated 

oth covariate features and phenotypes based on a small set 
f causal variants. All three workflows resulted in an output 
hat closely agree with that of non-secure centralized studies 
n the pooled dataset within two hours of runtime for each 

orkflow (Figure 3 ; Supplementary Table S1). 

lternative utilization modes and environments 

e e xtensi v ely tested sfkit ’s wor kflows using both uti- 
iza tion modes ( auto-configur ed and user-configur ed ) and 

n different computational environments (using machines 
ha t are co-loca ted in GCP versus hosted by different cloud 

r oviders). For example, we repr oduced the experiments 
rom the previous section, but this time between a user using 

CP and another user using Azure to host their machines, 
oth utilizing the user-configured mode. These variations 

n settings did not impact the accuracy of sfkit ’s work- 
ows and produced identical results. The additional delay 

ntroduced by more distant / cross-platform connections re- 
ained manageable; e.g., runtime to perform SF-GWAS on 

he 1000 Genomes Project dataset increased from 110 to 143 

in. These experiments are summarized in Supplementary 

able S1. 

untime and monetary cost 

e evaluated the cost of sfkit on a range of dataset 
izes obtained by replicating the Lung Cancer dataset (Sup- 
lementary Note 1). We split each dataset e v enly between 

wo users and ran the SF-GWAS workflow. The cost of a 

tudy increased linearly with the study’s runtime (Figure 4 ). 
fkit allows users to choose from a range of virtual ma- 
hine (VM) types to strike a balance between runtime and 

onetary cost. For instance, by opting for a more power- 
ul machine (with 32 CPUs instead of 16), the runtime on 

 dataset with 150k samples per user could be reduced by 

alf, albeit at an increased cost of $70 instead of $62 per user 
in USD). By extrapolating these results, we estimate a cost 
f $200 per user e v en on a much larger dataset including, 
.g. 200k samples and 90 milion SNPs. Further cost reduc- 
ions may be possible with more optimized usage of cloud 

omputing services. 

elated work 

o the best of our knowledge, sfkit is the only existing 

 e b server that automates the execution of a collection of 
rypto gra phic algorithms de v eloped for collaborati v e ge- 
omic analysis workflows with a provably high level of se- 
urity. 

Se v er al str ategies and software tools have been de v eloped
or collaborati v e GWAS ( 13–16 ). The PLINK software 
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Figure 3. Reproducible demonstration of sfkit workflows on the public 1000 Genomes Project dataset. sfkit allows users to perform both GWAS 
( A ) and PCA ( B ) securel y on distributed datasets, w hile achieving r esults that ar e comparable to those obtained from centralized studies, executed using 
PLINK ( 13 ) on the corresponding pooled dataset. Two distinct workflows for GWAS are shown (SF-GWAS and MPC-GWAS), which perform similar 
computa tion, but provide dif ferent security properties (Ma terials and Methods). These examples can be reproduced by following a tutorial on the sfkit 
w e b server. 
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( https://www.cog-genomics.org/plink/ ) implements meta-
analysis methods, allowing multiple parties to statisti-
cally combine their local GWAS results without sharing
indi vidual-le v el data. Nasiriger deh et al. ( 14 ) proposed
sPLINK, a federated implementation of GWAS with se-
cur e aggr ega tion of local sta tistics, which is also available
as a w e b-based tool. Both these approaches do not sup-
port a collaborati v e PCA, an essential step in GWAS. They
also r equir e the users to install the r equir ed softwar e and
setup their own machine, processes that are automated in
the auto-configured mode of sfkit . Moreover, these ex-
isting approaches still re v eal some aggregated intermedi-
ate results between the participants. It has been shown
that the shared intermediate results in federated analysis
pipelines can re v eal some information about the private in-
put datasets ( 17 , 18 ). With sfkit , no data is re v ealed e x-
cept for the final analysis results. We further note that meta-
analysis can be less accurate than a centralized study, espe-
cially gi v en heterogeneous data distributions ( 14 , 19 ) (Sup-
plementary Figure S1). 

Se v er al gener al-purpose and open-source soft-
ware have been developed for federated model
training and data analysis, including: FedML
( https://www.fedml.ai/ ), FATE ( https://fate.fedai.org/ ),
PySyft ( https://blog.openmined.org/tag/pysyft/ ), OpenFL
( https://github.com/intel/openfl) and TensorFlow Feder-
ated ( https://www .tensorflow .org/federa ted ). W hile some of
these solutions provide a similar le v el of pri vacy protection
as sfkit (e.g. PySyft), none of them are designed for ge-
nomic anal yses. Ada pting these existing tools to efficientl y
perform the sophisticated workflows addressed by sfkit
would r equir e substantial effort. 

CONCLUSION 

sfkit is a user-friendly w e b server designed to help a group
of r esear chers secur ely perform collaborati v e genomic anal-
yses, including association tests and population stratifica-
tion anal ysis, jointl y across da tasets tha t cannot be pooled
together. The modular design of sfkit facilitates seam-
less integration of additional analysis workflows, such as
training of disease risk prediction models. A key direction
for future work is to demonstrate analysis across large-
scale biobanks, e.g., the All of Us Research Program and
the UK Biobank, le v eraging sfkit ’s capabilities. sfkit
r epr esents a step toward broadening access to state-of-
the-art crypto gra phic tools for collaborati v e biomedical
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A T A A V AILABILITY 

he eMERGE and Lung Cancer datasets are available 
hrough the National Institutes of Health’s database of 
enotypes and Phenotypes (dbGaP) under accession num- 

ers phs000888.v1.p1 and phs000716.v1.p1. The example 
ataset constructed based on the 1000 Genomes Project 
ataset is available for download on the tutorial page of our 
 e bsite. 
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