
Scalable and Privacy-Preserving Federated Principal Component Analysis

David Froelicher∗ † ‡, Hyunghoon Cho∗ ‡, Manaswitha Edupalli‡, Joao Sa Sousa§, Jean-Philippe Bossuat¶,
Apostolos Pyrgelis§, Juan R. Troncoso-Pastoriza¶, Bonnie Berger† and Jean-Pierre Hubaux§ ¶

†MIT, ‡Broad Institute of MIT and Harvard, §EPFL, ¶Tune Insight SA

Abstract—Principal component analysis (PCA) is an essential
algorithm for dimensionality reduction in many data science
domains. We address the problem of performing a federated
PCA on private data distributed among multiple data providers
while ensuring data confidentiality. Our solution, SF-PCA, is an
end-to-end secure system that preserves the confidentiality of
both the original data and all intermediate results in a passive-
adversary model with up to all-but-one colluding parties. SF-
PCA jointly leverages multiparty homomorphic encryption, in-
teractive protocols, and edge computing to efficiently interleave
computations on local cleartext data with operations on collec-
tively encrypted data. SF-PCA obtains results as accurate as
non-secure centralized solutions, independently of the data dis-
tribution among the parties. It scales linearly or better with the
dataset dimensions and with the number of data providers. SF-
PCA is more precise than existing approaches that approximate
the solution by combining local analysis results, and between
3x and 250x faster than privacy-preserving alternatives based
solely on secure multiparty computation or homomorphic
encryption. Our work demonstrates the practical applicability
of secure and federated PCA on private distributed datasets.

1. Introduction

Principal component analysis (PCA) [1], [2] is an algorithm
for analyzing a high-dimensional dataset, represented as a
matrix of samples (rows) by features (columns), to uncover
a small set of orthogonal directions—principal components
(PCs)—that together maximally capture the observed variance
among the data samples. Given the ability of PCA to reduce
the dimensionality of a dataset while preserving its information
content, it is commonly used in many data analysis workflows,
including predictive modeling and exploratory data analysis
(e.g., clustering and data visualization) [3], [4], [5], [6],
[7], [8], [9], [10]. PCA is also a common pre-processing
technique in machine learning (ML) pipelines, where the goal
is to reduce the number of features to avoid overfitting and
improve generalization performance [7], [11], [12], [13], [14].
While more sophisticated non-linear dimension-reduction
approaches have been proposed (e.g., based on autoencoders
[15], [16]), PCA remains the de-facto standard method
for dimension reduction, as it is computationally efficient,
theoretically well-understood, and reliably accurate [6], [17].

Many modern applications of PCA involve data from
individuals, raising privacy-related challenges that limit the
availability of data for such analyses. In the biomedical domain,
the high-dimensional nature of biomedical measurements
often necessitate the use of PCA to extract key features
from personal data, including genetic sequences [9], [18],

* Equal contribution

single-cell transcriptomic data [19], [20], medical images [4],
[21] and time-series data [7], [22]. PCA is also commonly
used in other domains involving personal data, including
quantitative finance [8] and recommender systems [10]. Due to
the privacy and security implications, the sharing of personal
data in these domains is often prohibited, rendering the data
analysis difficult or even impossible. This results in sensitive
data remaining siloed in access-controlled repositories and
not shared across organizations, which often hinders research,
innovation, and routine organizational tasks [23].

Federated privacy-preserving analytics, which aims to
facilitate the joint analysis of sensitive data held by multiple
parties using privacy-enhancing technologies [24], [25],
[26], [27], [28], has emerged as a promising solution to the
aforementioned challenges with the potential to overcome
regulatory barriers in data sharing [29]. Despite the growing
interest, many essential tools for data analysis including the
PCA, especially those upstream of widely studied tasks such
as model training and inference, have received limited interests
and are often omitted from federated workflows. This creates
an important gap in secure analytics, potentially undermining
their security or utility if one falls back on a non-secure or
less-accurate alternative in order to perform the full analysis.

A key challenge in developing a secure federated solution for
PCA is that it requires complex and iterative computations (e.g.
matrix factorization), which are costly given a large-scale input.
These operations are not directly amenable to efficient computa-
tion with generic cryptographic techniques [30], [31], [32]. Re-
flecting this difficulty, many existing federated solutions [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], propose
that the data providers (DPs) independently perform an initial
dimension reduction on their local data, before they combine
their intermediate results and execute the final decomposition
on the merged results. This approach, which we refer to as
meta-analysis, results in a loss of accuracy as it alters the origi-
nal PCA problem and is prone to overlooking patterns spanning
multiple DPs’ datasets, especially when the data distributions
differ among the DPs. Furthermore, most meta-analysis solu-
tions require the DPs’ intermediate results to be revealed to an
aggregator server (or to other DPs) hence are not end-to-end se-
cure. Other existing PCA solutions based on secure multiparty
computation (SMC) techniques [43], [44], [45], [46] require
the entire input data to be securely shared with a few computing
servers. With the high communication overhead of SMC, these
solutions have difficulty supporting a large number of parties.

In this paper, we propose an efficient and secure system for
performing a federated PCA on a distributed dataset, where
the data remains protected and locally stored by the respective
DPs. Our solution, named SF-PCA (for Secure Federated PCA),

1

ar
X

iv
:2

30
4.

00
12

9v
1

 [
cs

.C
R

]
 3

1
M

ar
 2

02
3

executes the randomized PCA (RPCA) algorithm [47], the de
facto standard for PCA on large-scale matrices, in a federated
manner using a multiparty extension of homomorphic encryp-
tion [48]. Contrary to meta-analysis solutions, SF-PCA directly
executes a standard PCA algorithm (i.e., RPCA) to achieve
state-of-the-art accuracy similar to a centralized analysis, while
ensuring end-to-end privacy by protecting even the intermediate
results. Unlike SMC solutions, SF-PCA is more communication-
efficient and can be used by a large number of DPs. Note
that our setting is related to cross-silo federated learning [49],
except we do not focus on predictive model training and we
use cryptographic techniques to provide end-to-end privacy.

Specifically, SF-PCA is built upon the cryptographic frame-
work of multiparty homomorphic encryption (MHE; see §.3).
In MHE, analogous to related works on threshold HE [50], [51],
[52], [53], the collective secret (or decryption) key is secret-
shared among all the DPs, and the corresponding public key
and additional evaluation keys required for homomorphic opera-
tions are known by all DPs. This ensures that, while encryption
and ciphertext computations can be independently performed
by each DP, decrypting ciphertexts requires all DPs to collabo-
rate [48]. MHE’s ability to offload certain computations to be
locally performed by each party using the cleartext data leads to
key performance improvements, as we show in our work. Per-
forming a compute-intensive algorithm like RPCA, which in-
volves sophisticated linear algebra operations (e.g., orthogonal-
ization and eigendecomposition) on input vectors and matrices
of a wide range of dimensions, while efficiently working within
the constraints of MHE and maximally exploiting its strengths
is the key challenge we address in SF-PCA by introducing opti-
mization strategies and efficient MHE linear algebra routines.

Our evaluation demonstrates the practical performance of
SF-PCA on six real datasets. For example, SF-PCA securely
computes five PCs on the MNIST dataset [54] with 60,000
samples and 760 features, split among six DPs, in 2.22 hours.
In the same setting, it obtains the two PCs from a lung cancer
dataset [55] with 9,098 patients and 23,724 genomic features
in 3.5 hours. SF-PCA scales at most linearly with the input
dimensions and with the number of DPs. SF-PCA is one to
two orders of magnitude faster than a centralized-HE solution.
It is up to ten times faster than existing SMC solutions [45],
which scale poorly with the number of DPs. We also show
that SF-PCA is highly accurate, resulting in Pearson correlation
coefficients of above 0.9 (compared to the ground truth) in all
settings, whereas meta-analysis often obtains inaccurate results
(e.g., a correlation below 0.75 for both datasets mentioned
above). Moreover, SF-PCA executes PCA while ensuring end-
to-end data confidentiality as long as one DP is honest, whereas
meta-analysis reveals the intermediate results to the aggregator
server. Both centralized-HE and the previous SMC solution
[45] require an honest third-party to hold the decryption key or
to distribute correlated randomness for efficiency, respectively.

In this work, we make the following contributions:
• We propose SF-PCA, a system for an efficient, federated,

and end-to-end confidential execution of PCA [47].
• We demonstrate key design strategies underlying the

practical performance of SF-PCA, including: (i) maximizing
operations on the DPs’ cleartext local data by restructuring
the computation and (ii) developing efficient linear algebra
routines under a consistent vectorized encoding scheme
for encrypted matrices to fully utilize the packing and

single-instruction multiple-data (SIMD) property of MHE
without costly encoding conversion.

• We introduce an adaptive approach for choosing both
the high-level computational approach for PCA and the
low-level MHE routines to maximize efficiency, based on
the input dimensions for each computational step.

• We propose efficient MHE-based algorithms for
sophisticated linear algebra operations on encrypted
matrices, including matrix multiplication, factorization, and
orthogonalization, in the federated setting.

• We demonstrate the practical performance of SF-PCA on
six real datasets and illustrate its utility for biomedical data
analysis. We show that SF-PCA is more scalable than existing
solutions for privacy-preserving PCA while producing
accurate results comparable to a centralized execution of
PCA regardless of the data distribution among the parties.

To the best of our knowledge, SF-PCA is the first system
to enable federated PCA in a scalable and end-to-end
confidential manner. We note that SF-PCA’s optimization
strategies and linear algebra building blocks are broadly
applicable to the development of secure federated algorithms
and thus are of independent interest.

2. Related Work

2.1. Homomorphic Encryption (HE)

We discuss prior works on linear algebra in HE and on
distributed HE schemes, two essential components of SF-PCA
(§.6).
HE for Linear Algebra. Multiple works have shown how
to optimize matrix-vector multiplications [24], [56] and
multiplications between small matrices (i.e., fitting in a single
ciphertext) [57], [58], [59], [60]. Multiplication of large en-
crypted matrices, whose rows do not fit into single ciphertexts,
has been less studied. PCA requires multiple types of multi-
plications involving large matrices of varying dimensions, and
efficiently performing these operations under encryption is key
to achieving practical performance. SF-PCA jointly leverages
a range of matrix multiplication methods whose complexities
scale differently with the input dimensions, making an adaptive
choice for each computational step in RPCA (§.6.1).
Distributed HE. When multiple parties use HE to combine
their private data, they can either share all of their data
encrypted under the same key held by a trusted entity (e.g., in
a centralized scheme [61], [62]), or adopt a distributed scheme
where no single entity holds the decryption key. In threshold
encryption schemes [63], [64], the encryption key is known
to all parties whereas the decryption key is secret-shared
among the parties such that a predefined number of them
must collaborate to decrypt a ciphertext. In multi-key [65]
schemes (including a hybrid with threshold schemes [66]), the
parties have their own key pair and can jointly compute on
data encrypted under different keys, but the complexity scales
with the number of parties. In SF-PCA, we rely on a multiparty
HE scheme (MHE) proposed by Mouchet et al. [48], which
corresponds to an s-out-of-s threshold scheme. This scheme
enables local computation with complexity independent of
the number of parties and provides a lightweight, interactive
protocol to refresh (bootstrap) a ciphertext—a key factor for SF-
PCA’s efficiency in contrast to alternative approaches (see §.5).

2

2.2. Principal Component Analysis (PCA)

Secure Centralized PCA. Few solutions have been proposed
for the secure centralized computation of PCA due to its
computational complexity. Pereiral and Aranhal [67] proposed
a method for performing PCA on an encrypted dataset using
homomorphic encryption (HE). HE-based solutions typically
incur a high computational overhead compared to their cleartext
counterparts. In addition, they require a costly centralization
of the data and have a single point-of-failure, i.e., the holder
of the decryption key. In SF-PCA, since the exchanged data are
encrypted with a collective key, no single entity can decrypt
them, and compute-intensive HE operations (e.g., bootstrap-
ping) are replaced by lightweight interactive protocols. In §.7.6,
we compare SF-PCA with an HE-based centralized solution.
Non-Secure Federated PCA. Solutions that enable PCA on
distributed data without privacy protection fall in two main
categories: iterative [68], [69], [70], [71] and non-iterative [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43]. In the
former, the DPs communicate and collaborate in order to per-
form each step of the algorithm. In the latter, the DPs perform
the decomposition locally and then merge their results; we also
refer to this approach as meta-analysis. Meta-analysis requires
less communication but introduces inaccuracies by approximat-
ing PCA with two levels of decomposition, i.e., an independent
local decomposition by each DP and a global one for the
merged results. These solutions typically require that the local
data distribution be consistent across DPs to obtain accurate re-
sults. In addition, they are not end-to-end secure as they require
the DPs’ intermediate results to be revealed to an aggregator
server (or to other DPs), representing a single point of failure.
Intermediate results have been shown to reveal information
about the original data in federated settings, e.g., in PCA [70]
and ML [72], [73]. In contrast, SF-PCA implicitly performs
RPCA on the joint data without altering the original approach,
thus obtaining accurate results independently of the data dis-
tribution among the DPs (§.7). It also keeps all the exchanged
information secret and does not rely on an aggregator server.
SMC-based PCA. Several solutions [43], [44], [45], [46]
leverage secure multiparty computation (SMC) to perform
PCA on data that are secret-shared among a limited number
of parties (e.g., three). These solutions require the data
to be outsourced to computing parties, incurring a high
communication overhead for large datasets. Unlike SMC
solutions, SF-PCA can be efficiently used by a large number of
parties, and their data are kept locally with a minimal amount of
encrypted information exchanged for the PCA computation. In
§.8, we discuss an extension of SF-PCA where SMC techniques
are integrated into our system to aid in carrying out non-
polynomial function evaluations on small-dimensional inputs.
HE-based PCA. To our knowledge, Liu et al. [74] proposed
the only existing homomorphic encryption (HE)-based solution
for federated PCA. However, they rely on an aggregator
server that decrypts the aggregated values at each step of the
process. Since the intermediate results can reveal information
about the parties’ local data, these methods are not end-to-end
secure. SF-PCA demonstrates that a fully decentralized and
end-to-end secure solution for PCA is practically feasible.
Differential Privacy-based PCA. Solutions based on dif-
ferential privacy [75], [76], [77] fundamentally differ from

SF-PCA in that their goal is to limit the privacy leakage of
the intermediate or final results. To achieve this goal, these
solutions introduce noise into the computation, making the
final results less accurate. Furthermore, analogous to meta-
analysis, some of these solutions rely on a local decomposition
followed by a global aggregation of results, introducing
an approximation error in addition to the noise added for
differential privacy. In SF-PCA, no intermediate result is
revealed, hence differential privacy is not needed to protect the
information exchanged during the algorithm. On the other hand,
if the DPs wish to reveal the final PCA result with differential
privacy, such guarantee can be added to SF-PCA (§.8).

3. Background

Notation. Matrices and vectors are denoted by boldface
uppercase and lowercase characters, respectively. The i-th row
(resp. column) of a matrix X(a×b) with a rows and b columns
is denoted by X[i,:] (resp. X[:,i]). The submatrix from (resp.
up to but not including) row i and column j is denoted as X[i:,
j:] (resp. X[:i,:j]). The i-th element of a vector of b elements
y(b×1) is denoted by y[i]. Cleartext data are indicated by a
tilde (e.g., X̃). A matrix multiplication is denoted by ×.
Principal Component Analysis (PCA). PCA is used to ex-
tract the most prominent set of linearly independent directions,
i.e., principal components (PCs), that underlie a set of corre-
lated features (columns of a data matrix). The PCs are identified
in a descending order of the variance among the data points that
each one captures. The PCs can be viewed as the leading eigen-
vectors of the feature covariance matrix, where the correspond-
ing eigenvalues represent the variance explained. Dimension
reduction of the dataset can be achieved by projecting the data
points onto the PCs. Formally, PCA takes the matrix Ã(n×m)

and outputs the reduced matrix Ã′(n×ψ) obtained from the
projection of the input matrix onto its ψ (with ψ�m) PCs.

= Eigen(# iterations:

=QRT(

𝜌

×

×

𝑨"𝑛

𝑚

𝜌
𝑚

𝑨"𝑛

𝑚

=

𝑨"𝑛

𝑚

= 𝑨"𝑛

𝑚

- 𝑶"𝑛

𝑚

𝜌
𝜌

=

𝜌

𝒁" × ×

𝜌
𝜌

𝑼% 𝑤

×=
𝑚

𝑚 𝑨#T=𝜓
𝑛

(𝑨%′)𝑻

Step 1: Setup

Step 2: Mean-Centering

Step 3: Random Projection

×

𝑷#

Step 4: Power Iterations

𝜌
𝑚
𝑷# 𝜌 𝑷#

Step 5: Reduction

𝑚

𝑷#
𝑚

𝑷#T𝑚

Step 6: Eigendecomposition

Step 7: Reconstruction

𝜓 𝑾, 𝜌 𝑷#
𝑚

Step 8: Projection 𝑛

)

𝑛
𝚷%𝜌

𝑛
𝚷%𝜌

𝑨"T𝑨"m

𝑚

𝑨"T𝑨"𝑚

𝑚

𝜌
𝜌

𝒁")

𝜓
𝜌

𝑼	,

𝑚
𝜓 𝑾,

,

For 𝒋 = 𝟏,… , 𝒑:

End For

[: 𝜓]

Figure 1: Randomized PCA Workflow. Matrix dimensions are shown with
the box sizes and are indicated on the left and top of the corresponding box.

Randomized PCA (RPCA) [47] is an efficient randomized
algorithm for PCA, which lowers the complexity of the
matrix decomposition by first reducing the input dimension via
random projection [47]. Fig. 1 depicts the workflow of RPCA.
It takes as input the matrix Ã and a random sketch matrix Π̃
(Step 1). We adopt the count-sketch approach [78] for gener-
ating the latter, where the elements are drawn from {−1,0,1}.
The columns of the input matrix Ã are first mean-centered
(Step 2); Õ denotes the matrix in which each column contains
the mean of the corresponding column of Ã. Next, the input

3

matrix is projected to a lower-dimensional space by multiplying
with the sketch matrix (Step 3). For improved accuracy [47],
the projected matrix P̃ is recursively multiplied with the covari-
ance matrix ÃT Ã for p iterations (Step 4). At each iteration,
the resulting matrix is orthogonalized using the QR factoriza-
tion for numerical stability. We denote this step by QRT , as this
algorithm is applied to the rows of the matrix, not columns, in
our setting. In Step 5, a small symmetric matrix Z̃ representing
the feature covariance in the low-dimensional space is com-
puted by multiplying the result P̃ of Step 4 on both sides of
the covariance matrix. In Step 6, the eigenvectors W̃ of Z̃ are
computed via eigendecomposition (Eigen); we use the QR iter-
ation algorithm with tridiagonalization and implicit shifting of
eigenvalues [79] (see §.6.2 for details), which are standard tech-
niques for improving the convergence. RPCA reduces the orig-
inal problem of factorizing Ã∈R(n×m) to decomposing the
tiny, constant-size matrix Z̃∈R(ρ×ρ), where ρ=ψ+α with ψ
the desired number of principal components and α an oversam-
pling parameter. The latter is used to increase the accuracy of
the algorithm [47]. In Step 7, it reconstructs the eigenvectors
in the original space (i.e., the PCs W̃) and finally projects the
data points of Ã onto the PCs in Step 8 to construct the output.
Multiparty Homomorphic Encryption (MHE). To
securely perform PCA across distributed datasets, we rely
on a multiparty (or distributed) fully-homomorphic encryption
scheme [48] in which the secret key sk is shared among the
parties via a secret-sharing scheme, whereas the corresponding
collective public key pk is known to all of them. As a
result, each party can independently compute on ciphertexts
encrypted under pk, but all parties have to collaborate to
decrypt a ciphertext.

Mouchet et al. [48] showed how to adapt ring-learning-
with-errors-based homomorphic encryption schemes [61],
[62], [80] to the multiparty setting. In SF-PCA, we instantiate
the multiparty scheme with the Cheon-Kim-Kim-Song (CKKS)
cryptosystem [61]. CKKS is a homomorphic encryption
scheme that enables approximate arithmetic over CN/2;
the plaintext and ciphertext spaces share the same domain
RQL =ZQL [X]/(XN+1), with QL=

∏L
0 qi in our case and

N a power of 2. Both plaintexts and ciphertexts are represented
by polynomials of degree up to N−1 (with N coefficients) in
this domain, each encoding a vector of up to t=N/2 floating-
point values. Any operation is SIMD, i.e., simultaneously
performed on all encoded values. CKKS’s security is based
on the ring learning with errors (RLWE) problem [80] and
some noise is added directly in the least significant bits of
the encrypted values. Mouchet et al. [48] have shown that the
distributed protocols (described below) introduce only additive
noise, linear in the number of DPs. To limit the noise growth
during homomorphic operations in SF-PCA, we leverage
general scale-management techniques for CKKS [81], [82],
[83]. We refer to Appendix A for cryptoscheme details.

Main MHE Operations. The DPs each have a public key
pki and the corresponding secret key ski (with {ski} the
set of all DPs’ secret keys) and can collectively execute the
following operations. We denote a collectively encrypted
vector by c and a plaintext vector by p̃. Symbols are
summarized in Tab. 3 (Appendix B).
• pk, evks ←− DKeyGen({ski}) generates the collective

public key pk and evaluation keys evks, which are required

for ciphertext transformations such as rotations. The DPs
aggregate the local shares of keys (randomly generated
based on a public source of randomness) to obtain public
collective keys [48].

• c ←−DBootstrap(c′, {ski}) collectively refreshes a cipher-
text to obtain a fresh encryption. This operation is required
after every λ multiplications to ensure a correct decryption.

• cpk′←−DKeySwitch(c, pk′, {ski}) changes the encryption
of a ciphertext c from the public key pk to another
public key pk′, without decrypting the ciphertext. The
collective decryption is a special case of this operation (i.e.,
DKeySwitch(c,∅,{ski})). To prevent information leakage
upon decryption [84], a fresh noise with a variance larger
than that of the ciphertext is added before decryption [48],
[84], [85], [86].

Each DP can independently encrypt, and perform the following
operations listed in order of increasing computational
complexity (Tab. 2):
• cpk ∈R2

QL
←− Enc(pk,p̃) with a plaintext vector p̃, such

that DKeySwitch(cpk,∅,{ski})≈ p̃.
• c′′=c + c′, addition of encrypted vectors.
• c′ = c · p̃, element-wise multiplication of an encrypted

vector and a cleartext vector. The result needs to be rescaled
to maintain ciphertext scale.

• c′′= c ·c′, element-wise multiplication of two encrypted
vectors. The result needs to be relinearized and rescaled
to maintain ciphertext size and scale.

• c′= Roty(c,evks), cyclic rotation of length y to the left
(to the right if y is negative) on the encrypted vector c.

• c′′=c•c′, dot product of two encrypted vectors. The result
is encoded in the first position of a one-hot encoded vector
c′′.

• c′=Dupy(c), duplication of the first element of c to the
first y positions of c′ with dlog2(y)e rotations and additions.

4. SF-PCA System and Security Models

Our system model is illustrated in Fig. 2. We consider
a cleartext dataset, represented as a matrix Ã ∈ R(n×m),
that is horizontally split among a set of interconnected data
providers DP1,...,DPs such that each DPi has Ãi∈R(ni×m)

with
∑

ini =n. The number of data samples held by each
DP (i.e., ni) is considered public. We discuss the vertically
partitioned case in §.8.

𝜓
	P

Cs

𝑚	Features

𝑚	Features

DP1:

DP6:

𝑛	Sam
ples

Input:
Distributed dataset

DP1
DP2

DP3
DP4

DP5

DP6

SF-PCA

…

Output:
Projected data and/or PCs

𝑛𝑖DP𝑖:

…

𝜓	PCs

𝑛𝑖

Encrypted with MHE Interactive comp. Local comp.

Data
providers

(DPs)

…
…

:DP1

:DP6

:DP𝑖

𝑛	
Sa

m
pl

es

Figure 2: SF-PCA System Model and Functionality. Each DPi holds a
ni×m submatrix as input and collaboratively executes SF-PCA to obtain
encrypted PCs and/or the projection of its local data.

SF-PCA enables the DPs to collaboratively execute a
randomized PCA on their joint data. In the end, each DP

4

obtains ψ collectively encrypted PCs, on which each DP
can locally project its data. If required by the application,
each DP’s projected data (encrypted under the collective key)
can be collectively switched (DKeySwitch, §.3) to each DP’s
public key pki to be locally decrypted. Similarly, the PCs
can be collectively decrypted and shared among the DPs.

We adopt the semi-honest model, where the DPs follow
the protocol as specified, but might try to infer information
about another DP’s data, potentially colluding with other DPs.
We require that the DPs’ data and all intermediate results
remain confidential. In other words, SF-PCA provides input
confidentiality, i.e., no DP is able to learn any information
about any other DP’s local data other than what it can infer
from the final output of PCA (e.g., its projected local data).
We require that this property holds as long as one DP remains
honest and does not collude with others.

5. SF-PCA Protocol Design

We introduce an end-to-end confidential and federated
approach to execute a RPCA (§.3) jointly over s DPs holding
their local data. At each step of the PCA execution, the DPs
collectively compute encrypted global intermediate results
through interactive protocols that combine the results of local
computation on each DP’s cleartext data. The intermediate
results remain encrypted under the DPs’ collective key and are
never revealed. While our system’s ability to leverage local
cleartext computation opens the door to efficient multiparty
algorithms, a careful algorithmic design is still necessary for
developing a practical PCA protocol.

Leveraging existing approaches for secure computation
(e.g., HE or SMC), the DPs could outsource their encrypted
(or secret-shared) data to one or multiple computing parties
to jointly perform the PCA. However, the communication
overhead of sharing the entire dataset as well as the
computational burden of performing complex computations
(e.g., multiplication and factorization of matrices) on the
pooled dataset render these solutions impractical for large-scale
datasets. Note that the repeated matrix multiplications are
challenging to perform efficiently under HE due to the costly
bootstrapping procedure. SF-PCA addresses these challenges
by introducing efficient MHE-based protocols based on
a federated approach to joint computation. We compare
SF-PCA’s performance with existing approaches in §.7.

5.1. Key Strategies for Accuracy and Efficiency

In RPCA (Fig. 1), many matrix multiplications involving
the input matrix Ã(n×m) (or its covariance matrix) largely
determine the protocol’s complexity. These multiplications are
interspersed with sophisticated linear algebra transformations,
such as the QR factorization invoked at the end of each
power iteration (Step 4 in Fig. 1) and eigendecomposition
(Eigen in Step 6), which view the matrix as a set of row (or
column) vectors and apply vector-level operations. Below,
we explain our strategies to carry out these computations
efficiently while maintaining the accuracy of results.
Obtaining Accurate Results by Emulating Centralized
PCA. Existing federated approaches to PCA that combine
the results independently obtained by the DPs (e.g., meta-
analysis), are prone to errors introduced by differences in

data distribution among the DPs. In SF-PCA, we avoid this
pitfall by securely combining the intermediate results at each
step of the protocol (via collective aggregation Ξ in Alg.1)
to emulate a centralized analysis, thus obtaining the same
PCs regardless of how the data are split (§.7.7).
Efficient Edge-Computing on Local Cleartext Data.
Working with an encrypted form of the entire input matrix (Ã
in Fig. 1) would require the DPs to transfer large amounts of
data (e.g., for centralized HE or secret sharing) or to perform
costly ciphertext operations on large matrices, both of which
become impractical for large-scale datasets. In SF-PCA (Alg.1),
the DPs jointly perform the PCA without encrypting or ex-
changing the input data. They collaborate instead by computing
on their local cleartext data (i.e., the sub-matrix Ãi) and ex-
changing only low-dimensional and aggregate-level encrypted
information. This enables the DPs to minimize communication
and maximize the use of low-cost MHE operations involving
the cleartext data (e.g., with our default parameters, cleartext-
ciphertext multiplication is eight times faster than a ciphertext-
ciphertext multiplication; Tab. 2). We also modify the RPCA
computation to use only the cleartext input throughout the
workflow. For example, instead of directly constructing a mean-
centered input matrix (Step 2 in Fig. 1), which needs to be
encrypted due to the means being private, SF-PCA keeps each
local matrix Ãi in cleartext and associates with it an encrypted
mean vector o to correct for mean shifts in subsequent steps
(see Step 2 in Alg.1). This enables a key optimization for the
matrix multiplications in Steps 3-5, 7 and 8 (Alg.1), where
the cleartext matrix Ãi is pre-transformed to minimize costly
ciphertext operations such as rotations in later steps. In §.6.1.3,
we show how to efficiently multiply an encrypted matrix with
another containing only duplicated rows (or columns), which
is used for lazy mean correction in Steps 4, 5, 7 and 8.
Adaptive Selection of Computational Routines based on
Data Dimensions. In practice, PCA is applied to datasets
whose dimensions vary greatly depending on the application,
e.g., from tens of features in small predictive modeling
tasks to tens of thousands of features in genomic studies
(§.7). To achieve practical performance in a wide range of
settings, we propose an adaptive approach for optimizing
the computational routines based on the input dimensions. In
Alg.1, we introduce two different workflows for performing
RPCA: Precomp and Seq. In Precomp, the encrypted
covariance matrix G is precomputed in the beginning of Step
4 and reused, such that most of the following operations scale
primarily with the number of features m. In Seq, Ã is kept in
cleartext and used for matrix multiplications, which is more
efficient than using G, but now the computation scales with
both m and the number of samples n. In addition, in §.6.1, we
describe several matrix multiplication methods, each of which
scales differently with the input dimensions; SF-PCA selects
the best approach for each step in its workflow. Similarly,
in §.6.2, we introduce two approaches for performing the
QR factorization on an encrypted matrix (QR in Step 4), with
different complexities depending on the input dimensions.
Optimized Data Encoding for Linear Algebra on
Encrypted Matrices. The secure execution of RPCA
requires that the DPs iteratively perform various matrix
operations on encrypted data, including multiplication and
factorization. For example, the QR factorization, which is

5

repeatedly executed in-between matrix multiplications (in
Steps 4, 6, and 7 of RPCA; Fig. 1), is performed over the rows
of an encrypted matrix in SF-PCA. Selecting a row in a matrix
of m columns, where the columns are individually packed
in ciphertexts, would require m homomorphic multiplications,
additions, and rotations; in contrast, row selection incurs
no cost when the matrix is row-wise encoded. In fact, the
overwhelming cost of transforming encrypted matrices from
one encoding to another would make our system impractical.
We therefore adopt a consistent vectorized encoding scheme
throughout the algorithm to represent encrypted matrices
and tailor the operations to efficiently work with this format
without costly conversions. This also allows SF-PCA to
fully utilize the packing and SIMD properties of MHE thus
minimizing its overall computation and communication costs.
Selective Bootstrapping to Minimize Communication.
After a certain number of multiplications, a ciphertext needs
to be bootstrapped (DBootstrap, §.3) to restore its capacity for
computation. In SF-PCA, this is a collective operation, which
is computationally lightweight in contrast to its centralized
equivalent, but requires the ciphertext to be exchanged among
all DPs. To further minimize this communication overhead,
we restrict the invocation of DBootstrap to places where an
intermediate result is already globally synced and of a small
dimension (e.g., during QR factorization in Steps 4 and 7
in Alg. 1; see §.6.2), while flexibly allowing a ciphertext to
be bootstrapped even if some multiplication capacity remains.

5.2. Workflow Details

We describe the workflow of SF-PCA from the point of
view of DPi in Alg. 1. Recall that the DPs aim to compute ψ
encrypted PCs (rows of matrix W) on their joint data. RPCA
identifies ρ=ψ+α components with a small oversampling
parameter α for improved accuracy. In addition to Alg. 1, we
show in Fig. 8 in the Appendix how the matrix dimensions
evolve in SF-PCA’s workflow. The DPs interact by aggregating
(represented by Ξ) encrypted matrices and broadcasting the
encrypted result to all DPs.
Step 1: Setup. Each DPi holds Ã(ni×m), a submatrix of the
global input matrix Ã(n×m). The DPs generate the required
public keys (DKeyGen, §.3) and agree on the PCA parameters,
including: the number of power iterations p, the number of QR
iterations w for eigendecomposition, the desired number of PCs
ψ, the oversampling parameter α (resulting in the number of
components ρ=ψ+α for RPCA), and a public random sketch
matrix Π̃(ρ×n) (e.g., generated from a shared seed). In addition,
the DPs together decide the specifics of certain computational
steps in SF-PCA, such as the approximation intervals for non-
linear operations (§.6.3) and the method of choice for costly
linear algebraic operations (matrix multiplication and transfor-
mations; see §.6), taking the input dimensions into account to
maximize performance. All the parameters introduced in this
step are considered public. Note that the procedure to agree
upon the parameters is orthogonal to SF-PCA; e.g., the DP
initiating the collaboration could propose the parameters.
Step 2: Mean Calculation. The DPs compute the encrypted
vector o(1×m) of column averages of the input matrix
Ã(n×m) by securely aggregating their local column sums
divided by n, encrypted under the collective public key.

Step 3: Random Projection. DPi projects Ãi to a subspace
of ρ dimensions using the public sketch matrix Π̃(ρ×n). DPi
locally computes the product of Ãi and the corresponding
submatrix Π̃

(ρ×ni)
i of Π̃(ρ×n) to obtain its local sketch in

cleartext. The result is then encrypted and aggregated among all
DPs to obtain the encrypted sketch P of the global matrix Ã.
Step 4: Power Iterations. The sketch of the input matrix
obtained in the previous step is repeatedly multiplied with
the input matrix to increase the spectral gap between the top
eigenvectors of interest and the rest [47]. We execute this step
differently depending on the input dimensions for optimized
performance; the two approaches considered by SF-PCA are
described below. Notably, in both approaches, we leverage the
fact that the cost of cleartext operations is almost negligible
compared to that of HE to optimize the computation.

Approach 1: Precompute & Reuse (Precomp): Each DPi
precomputes the covariance matrix G(m×m)

i once and reuses
it in every iteration for multiplying with P . Note that Gi

needs to be encrypted due to the mean-centering operation
using the encrypted global column means o(1×m). SF-PCA’s
optimized matrix multiplication routines between an encrypted
and a cleartext matrix (§.6.1) minimize the computation
involving the encrypted matrix by precomputing certain
transformations of the cleartext matrix at a negligible cost.
To efficiently apply these methods to the encrypted Gi, we
obtain the transformations of Gi by transforming the cleartext
Ãi and ÃT

i before multiplying them.
Approach 2: Sequentially Multiply (Seq): The DPs sequen-

tially multiply P by the cleartext matrix Ãi (and its transpose)

6

on the fly. The covariance matrix is never explicitly constructed.
To keep the input matrix Ãi in cleartext, SF-PCA performs the
mean-centering of Ãi in a lazy manner (lazy mean-centering):
instead of subtracting the encrypted vector o(1×m) from each
row of Ãi, which would transform the whole input matrix into
an encrypted matrix, multiplication is performed using the origi-
nal cleartext Ãi and the resulting matrix is corrected to account
for the mean shift. More precisely, we multiply encrypted P
with mean-centered Ãi in three efficient steps: (1) multiply P
with the cleartext matrix Ãi, (2) compute the inner product be-
tween each row of P and o (see §.6.1.3), and (3) subtract each
inner product value from all elements in the corresponding row
of the matrix from (1). We observe that Precomp requires fewer
multiplications per power iteration and its computation cost
is mostly independent of n. Seq requires more operations but
maximizes cleartext operations by reusing the cleartext matrix
Ã. We compare the performance of both approaches in §.7.

In each iteration, a QR factorization (QRT ; Alg. 3) is applied
to either the aggregated matrix P (ρ×m), in both approaches,
or the intermediate (P×ÃT

i)(ρ×ni) in Seq. In the latter, the
factorization is optionally performed using a new interactive
protocol DQRT , when the computational speedup of each DP
computing on a matrix with ni columns vs. one DP computing
on an aggregated matrix with m columns exceeds the additional
communication cost, i.e., when ni�m (see §.6.2).
Step 5: Reduction. In the Precomp approach, the matrix P re-
sulting from Step 4 is transformed to a small symmetric matrix
Z by multiplying the covariance matrix Gi from both sides. In
the Seq approach, this is performed by using the cleartext ma-
trix ÃT

i and then by multiplying the result by its transpose. As
in Step 4, SF-PCA employs lazy mean-centering for this step.
Step 6: Eigendecomposition. The eigendecomposition (intro-
duced in §.3) is executed on the encrypted matrix Z. We detail
our MHE-based algorithm for this step in Alg. 4. It requires
the iterative execution of QRT and matrix multiplications.
Step 7: Reconstruction. The PCs (rows of W) are computed
by multiplying the eigenvectors from Step 6 with the approxi-
mated subspace from Step 3, followed by a final round of power
iteration and orthogonalization (QRT) for numerical stability.
Step 8: Projection. Each DPi projects its local cleartext
data ÃT

i onto the collectively encrypted PCs in W to obtain
their projected data A′

i, which is also encrypted under the
collective public key. If required by the application, by using
DKeySwitch, the PCs and/or the DPs’ projected data can be
collectively decrypted or re-encrypted under the public keys
of specific entities to grant controlled access to the decrypted
results.

6. Optimized Routines for Linear Algebra and
Non-Polynomial Functions on Encrypted Data

We describe how SF-PCA efficiently executes matrix
multiplications, sophisticated linear-algebra transformations
and non-polynomial function evaluations on encrypted data.
Although the methods in this section can also be employed in
the centralized setting, we note that the adaptive use of matrix
multiplication routines and the higher-level protocols for
matrix transformations (e.g., QR factorization) are optimized
while accounting for the unique properties of MHE, e.g., the
availability of local cleartext data and a lightweight interactive

bootstrapping routine, both of which alter the tradeoff between
different computational strategies and present new ways to
optimize the algorithm. Our secure federated routines may
be of independent interest for other applications.

6.1. Matrix Multiplications

Encrypted matrix multiplications are frequently invoked
in SF-PCA’s workflow and hence are a key determinant of
its performance. As outlined in Alg. 1, we introduce two
high-level algorithmic workflows—Precomp and Seq—for
executing RPCA. Both approaches involve different types
of multiplications over matrices of varying dimensions,
motivating our adaptive strategy for choosing the most
efficient routine for each computational step in SF-PCA among
a range of multiplication methods.

6.1.1. Adaptive Strategy. We identify two main types of
matrix multiplications in Alg. 1: (i) unbalanced multiplications
between a large encrypted matrix and a large cleartext (or
pre-transformed encrypted) matrix in Steps 4, 7 and 8, with
the key property that operations are cheap on one matrix
(cleartext) and expensive on the other (ciphertext); and (ii)
duplicated-vector multiplications, referring to multiplications
between a large encrypted matrix and another encrypted matrix
whose rows (or columns) are identical (e.g., corresponding
to the encrypted mean vector o).

In §.6.1.2, we detail three different approaches (M1, M2, and
M3) for unbalanced multiplications, each with a complexity
that scales differently with the input dimensions. We denote by
ζ∗M(a,b,c), the function that takes the three input dimensions for
multiplying M (a×b) and Ñ (b×c) matrices and outputs the cost
associated with the most efficient multiplication routine. The
cost we compare is a weighted sum of the multiplication and
rotation invocation counts, where the weights are determined by
the estimated runtime per operation in the given computational
environment. The cost of a cleartext-ciphertext multiplication
is set to be around 8 times lower than that of a ciphertext-
ciphertext multiplication according to our estimates (Tab. 2).

We identify the matrix multiplication costs of Precomp
and Seq for a single iteration as ζ∗M(ρ, m, m) and
ζ∗M(ρ,m,nmax)+ζ∗M(ρ,nmax,m), respectively, where ρ is the
number of reduced dimensions in RPCA, m is the number
of input features, and nmax =maxi(ni) represents the largest
number of samples locally held by the DPs. We consider the
worst-case complexity as the overall runtime being as fast as
the slowest DP. In addition, for both approaches, we incorporate
the cost of lazy mean-centering when comparing the overall
cost; Precomp requires 3b Mults and b Rots, whereas Seq
requires two duplicated-vector multiplications, which we
detail in §.6.1.3. We further compare these approaches in §.7.

6.1.2. Unbalanced Multiplications. We describe the HE
implementations of three matrix multiplication strategies:
Dot-Product Method (M1), Element-Duplication Method
(M2), and Diagonal Method (M3; adapted from Jiang et al.
[59]). We jointly consider these three methods because their
costs scale differently with the input dimensions, enabling
SF-PCA to optimize its performance in a wide range of
scenarios. For each method, we show its cost in terms of the
invocations of ciphertext rotations (Rots) and multiplications

7

(Mults) for multiplying a pair of a× b and b× c matrices.
The cost of cleartext operations is negligible. To simplify
the computational complexity analysis, we assume that b and
c are powers of two without loss of generality. We denote
by t the ciphertext capacity, i.e., the number of values that
can be packed in a ciphertext. Due to SF-PCA’s vectorized
encoding, the inner dimension b reduces to a small constant
d bt e in terms of the number of ciphertext operations.
Dot-Product Method (M1). Each element of R is obtained
from the dot product (•) between a row of M and a column
of Ñ (Line 4 in M1). The result of the dot-product is moved
to position j (0-based) by masking and rotating the vector by
j positions to the right (i.e., Rot(−j); see §.3). In SF-PCA, this
method is used (in Step 5 in Alg. 1) to multiply an encrypted
matrix by its transpose without any additional transformation,
since the encrypted rows of M can be directly used as the
columns of N . The multiplication and rotation costs mainly
depend on the outer dimensions.

M1: Dot-Product Method
Input: Encrypted M (a×b) and cleartext (indicated by a tilde) Ñ (b×c).
Output: Encrypted R(a×c) =M×Ñ
Cost: (d b

t
e+1)·ac Mults and ac·d b

t
e·log2(t) Rots

1: R←0(a×c)

2: for i=0, ..., a−1 do
3: for j=0, ..., c−1 do
4: R[i,:]←R[i,:]+Rot(−j)(M [i,:]•Ñ [:,j])
5: end for
6: end for

Element-Duplication Method (M2). This method avoids
the computation of pairwise dot products (used in M1) by
duplicating each element ofM to construct a vector of length c
and by multiplying this vector (element-wise) with each row of
Ñ (Line 4 in M2). The results are aggregated to obtainR. This
method’s cost depends mostly on the left matrix dimensions.

M2: Element-Duplication Method
Input: Encrypted M (a×b) and cleartext (indicated by a tilde) Ñ (b×c)

Output: Encrypted R(a×c) =M×Ñ
Cost: d b

t
e·ab Mults and ab·log2(min{c,t}) Rots

1: R←0(a×c)

2: for i=0, ..., a−1 do
3: for j=0, ..., b−1 do
4: R[i,:]←R[i,:]+(Dupc(M [i,j])·Ñ [j,:])
5: end for
6: end for

Diagonal Method (M3). This approach is based on the
technique of Jiang et al. [59], which we adapt to large-scale ma-
trices that cannot be packed in a single ciphertext. This method
transforms the cleartext matrix (by rotating its columns) such
that one of its rows corresponds to the diagonal of the original
matrix (Line 2 in M3). The rows of the encrypted M are then
rotated (Line 8) before being multiplied with the transformed
rows of Ñ at each iteration along the common dimension b
(Line 9). We use the baby-step giant-step approach [87] to
reduce the number of rotations on the rows of M from b to
2
√
b by storing the intermediate results in three-dimensional

tensors (i.e., M ′ and R′) (Lines 8 and 9), introducing a
tradeoff between computation and memory usage (see §.7.4).
The intermediate results are then aligned and aggregated in the
final matrix R (Line 14). The rows of M are duplicated or
truncated to have c elements (Lenc(·)) before the multiplication.

This method’s cost also depends mostly on the dimension of
the left matrix but, contrary to M2, its number of rotations
scales with the square root of the inner dimension times the
number of packed ciphertexts along the same dimension.

M3: Diagonal Method
Input: Encrypted M (a×b) and cleartext (indicated by a tilde) Ñ (b×c)

Output: Encrypted R(a×c) =M×Ñ
Cost: d b

t
e·ab Mults and d b

t
e·(d c

b
e+2a·d

√
be) Rots

1: for i=0, ..., c−1 do
2: Ñ [:,i]←Roti(Ñ [:,i])
3: end for
4: M ′←0(a×d

√
be×c), R′←0(a×d

√
be×c)

5: for i=0, ..., b−1 do
6: y← i mod d

√
be, g←bi/d

√
bec

7: for j= 0, ..., a−1 do
8: if M ′[j,y,:]=∅ then M ′[j,y,:]←Lenc(Roty(M [j,:]))
9: R′[j,g,:]←R′[j,g,:]+M ′[j,y,:]·Ñ [i mod m,:]

10: end for
11: end for
12: for i=0, ..., a−1 do
13: for l=0, ..., d

√
be−1 do

14: R[i,:]←R[i,:]+Rotl·d
√
be(R

′[i,l,:])
15: end for
16: end for

6.1.3. Duplicated-Vector Multiplications. This method
addresses a special setting where we multiply an encrypted
matrix M with another encrypted matrix Γ whose rows (Case
1) or columns (Case 2) are identical vectors µ. This setting
frequently arises in SF-PCA for the lazy mean-centering
operations (i.e., all operations involving o in §.5.2). Our
method accounts for this redundancy in the matrix to
minimize the number of rotations on both encrypted matrices.

M4: Vector-Duplication Method
Input: Encrypted M (a×b) and encrypted Γ(b×b),

where Γ=1×µT (Case 1) or Γ=µ×1T (Case 2)
Output: Encrypted R(a×b) =M×Γ
Cost: d b

t
e·a Mults and d b

t
e·2a·log2(min{b,t}) Rots

1: R←0(a×b)

2: for i=0, ..., a do
3: if Case 1 then R[i,:]←Dupb(M [i,:]•1)·µ
4: if Case 2 then R[i,:]←Dupb(M [i,:]•µ)
5: end for

6.1.4. Further Optimizations. We note that all multipli-
cation methods are parallelizable at the row level. Each
multiplication of a ciphertext is followed by a rescale and a
relinearization operation (the result of a multiplication with a
plaintext only needs to be rescaled, see §.3). When the results
of several multiplications need to be aggregated, we defer the
rescale and relinearization operations until after the aggregation
step so they can be executed once overall, rather than for every
multiplication. Because these operations account for between
52% and 75% of the multiplication time (Tab. 2) and SF-PCA
heavily relies on matrix multiplications, this optimization con-
siderably improves SF-PCA’s overall performance. For example,
it reduces the runtime of multiplying an encrypted M (8×28)

with a cleartext Ñ (28×28) with M3 from 24.6 to 3.8 seconds;
the improvement is expected to be greater for larger matrices.

8

Algorithm 2 - Encrypted Householder Vector (HH)
Input: Encrypted v(h×1)

Output: Encrypted v′(h×1), such that H= Ĩ(h×h)−2v′×v′T
ensures H×v all zeros except the first coordinate
Comp. Cost: 3·l(d)+6 Mults and 2·log2(h) Rots; l(d) defined in text
Comm. Cost: (

5+3(d1+log2(d)e)
λ

)·dh
t
e Ciphertexts

1: v2←v ·v
2: ||v||2←v2•1
3: ||v||←

√
||v||2

4: δ←v[0]/
√
v[0]2

5: δ←δ ·||v||

6: u←v
7: u[0]←δ+v[0]
8: u2←u·u
9: k←u2[0]+(||v||2−v2[0])

10: k′←Duph(1/
√
k[0])

11: v′←u·k′

6.2. Matrix Transformations and Factorizations

We introduce new routines for executing sophisticated linear
algebra operations required by the PCA on encrypted matrices
and vectors. We begin with the Householder transformation
[88], a key building block in other matrix transformations
such as QRT and Eigen, which we subsequently describe.
We also present a new algorithm, DQRT , for executing
a QR factorization on a matrix that is distributed among
multiple parties. Note that all methods except DQRT require
communication only for bootstrapping (DBootstrap; §.3),
which has a negligible computation cost. The reported
communication costs are thus measured by our optimized
number of invocations of bootstrapping on a single ciphertext.
Householder Transformation of Encrypted Vectors.
Alg. 2 performs a key step in the Householder transformation,
which reflects a vector about a given hyperplane, on an
encrypted vector. For use in PCA, we need to choose a specific
reflection hyperplane that transforms the input vector v into a
vector (of the same norm) with zeros in all coordinates except
for the first. The output v′ of Alg. 2 represents this hyperplane;
the Householder matrix obtained as H= Ĩ(h×h)−2v′×v′T ,
where Ĩ is the identity matrix, satisfies that H × v has a
nonzero element only in the first coordinate. This method is
used in QRT to iteratively apply orthogonal transformations
to the input matrix to convert it into a lower triangular matrix.
Following the standard technique, the norm of the input vector
(computed in Lines 1-3) is added to or subtracted from its first
coordinate (Line 7), depending on the sign of the first coordi-
nate (Line 4) for numerical stability. Afterwards, the vector is
normalized (Lines 9-11) to obtain the desired reflection vector.

Alg. 2 requires the evaluation of non-polynomial functions,
including the sign function (alternatively, g(x) =x/

√
x2, Line

4), the square root, and the inverse square root. To this end,
SF-PCA applies Chebyshev polynomial approximation [89] to
each function on a pre-determined input range (agreed upon
in Step 1; §.5.2). In addition, we use the baby-step giant-step
technique [90] to further reduce the complexity of evaluating
degree-d polynomials, resulting in a multiplicative depth of
dlog(d)+1e and 2·

√
2d+ 1

2 log2(d)+O(1) ciphertext multi-
plications. We denote this quantity as l(d) in our algorithms.
We discuss the choice of approximation intervals in §.6.3. For
the communication cost, we calculate the number of DBoot-
strap executions as the multiplicative depth of this method
divided by the number of available ciphertext levels λ (§.3).
QR Factorization of Encrypted Matrices. QR factorization
decomposes an input matrix V into an orthogonal matrix Q
and a lower-triangular matrix R such that V =R×Q. This is
repeatedly used in Steps 4, 6 and 7 of SF-PCA’s workflow. In

Algorithm 3 - Encrypted QRT Factorization (or DQRT):
Input: Encrypted V (δ×h)

Output: Encrypted Q(δ×h) and R(δ×δ), such that R×Q=V
Comp. Cost: O(δ2+δ ·ζHH) Mults, O(δ2 ·(1+log2(h))+δ ·ζHH) Rots,
where ζHH refers to the cost of HH (Alg. 2).
Comm. Cost: C=δ ·ζHH + 4δ2

λ
·dh
t
e Cipher. (DQR: C+3·δ ·dh

t
e Cipher.)

1: H←0(δ×h)

2: for i=0, ..., δ−1 do
3: v←HH(V [0,:]T)

(DQR: Ξ in Line 2 of Alg. 2)
4: H[i,:]←vT
5: v′←V ×v (DQR: Ξ(v′))
6: for j=0, ..., δ−i−1 do
7: V [j,:]←V [j,:]

−2 ·(vT ·Dup(δ−i)(v
′[j]))

8: end for
9: r←Rot(−i)(V [0,:])

10: R[i,:]←r[:δ]
11: for j= 0, ..., δ−i−1 do

12: V [j,:]←Rot1(V [j+1,:])
13: end for
14: end for
15: Q← [Ĩ(δ×δ) 0(δ×(h−δ))]
16: for i=δ−1, ...,0 do
17: H[i,:]←Rot(−i)(H[i,:])

18: h′←Q×H[i,:]T

(DQR: Ξ(h′))
19: for j=0, ..., δ−1 do
20: Q[j,:]←Q[j,:]

−2·H[i,:]T ·Dupi(h
′[j])

21: end for
22: end for

Alg. 3, we describe both the transposed-QR factorization QRT
that is executed by one DP on an encrypted matrix and its dis-
tributed equivalent DQRT . DQRT performs a QR factorization
in a federated manner on an encrypted matrix that is distributed
among the DPs, requiring the DPs to aggregate (denoted by Ξ)
their partial results in Lines 3, 5, and 18. In Step 4 of SF-PCA,
QRT is executed on a matrix with h=m columns (i.e., same as
the number of features), whereas DQRT is executed on a matrix
with h=n columns distributed among the DPs, where each
DPi has ni columns. HH and the vector-matrix multiplications
in Lines 5 and 18 are the only operations with a cost that
depends on h. DQRT requires more communication among the
parties, and the complexity of QR factorization depends mainly
on the number of rows δ, which is the same in both QRT and
DQRT , and not on h. Hence, we use DQRT only when the
difference between ni and m is large enough to compensate
for the communication overhead, i.e., when ξ ·log2(nmax)<
log2(m), with a factor ξ determined by the properties of the
network setup (e.g., latency). Note that nmax =maxi(ni).

From Lines 1 to 14, the input matrix V is multiplied
by the Householder matrix H = Ĩ − 2v × vT , where
v = HH(V [0, :]T) is the Householder vector obtained by
Alg. 2 with the first row of V as input. This transformation is
recursively performed on the (i,i) minors of V by discarding
the first row and the first column to incrementally obtain
the lower-triangular matrix R. Due to SF-PCA’s vectorized
encoding scheme, the sub-matrix is efficiently obtained by
applying a single ciphertext rotation per row (Line 9). In
SF-PCA, R is only used during the eigendecompostion in Step
6. Q is computed in the second part (Lines 15 to 22) and
corresponds to the product of all Householder matrices H .

Recall that we minimize bootstrapping by refreshing
only small-dimensional data that are globally shared among
the DPs (§.5). The intermediate values in QRT satisfy this
condition as they are derived from the input matrix that
is already aggregated. Hence, the optimized number of
invocations of DBootstrap(·) for QRT corresponds to its
multiplicative depth divided by λ. For DQRT , the input
matrix is split among the DPs. In this case, the results of the
collective aggregation (Ξ) in Lines 5 and 18, which constitute
globally shared vectors among the DPs, are bootstrapped

9

Algorithm 4 - Encrypted Eigendecomposition (Eigen):
Input: Encrypted symmetric M (η×η), number of iterations w
Output: Encrypted Q(η×η) and l(1×η), where the rows of Q are
eigenvectors of M , and l has corresponding eigenvalues
Comp. Cost: O(η ·(1+ζHH +w·ζQR)+η ·(1+w·ζM5)) Mults
and O(η ·(ζHH +w·ζQR)+η ·(1+(w·ζM5))) Rots,
where ζHH, ζM5 and ζQR refer to the costs of HH, M5 and QRT .
Comm. Cost: (η−1)·(ζHH +w·ζQR)+

(η−1)·(4+3w)
λ

·d η
t
e Ciphertexts

1: Q← Ĩ(η×η), T←0(η×η)

2: for i=0, ...,η−3 do
3: v←HH(M [0,1:]T)
4: P← Ĩ((η−i)×(η−i))

5: P [1:,1:]← Ĩ((η−i−1)×(η−i−1))

−2·v×vT
6: Q[i:,:]←P×Q[i:,:]
7: PM←P×M
8: M←PM×P T
9: T [i:i + 2, i:i +

2]←M [:2,:2]
10: M←M [1:,1:]
11: end for
12: T [η−2:,η−2:]←M

13: for i=η−1, ...,1 do
14: for j=0,...,w−1 do
15: S←T [i,i]×Ĩ[i,:]
16: T←T−S
17: Q′,R←QRT (T)
18: T←Q′×R
19: T←T+S
20: Q[:i+1,:]← Q[:i+1,:]×

Q′

21: end for
22: l[i]←T [i,i]
23: T←T [:i,:i]
24: end for
25: l[0]←T [0,0]

before being broadcast (shown as the additional cost).

Eigendecomposition of Encrypted Matrices. Alg. 4
decomposes an encrypted matrix M into Q×L×QT , where
Q is a matrix of eigenvectors and L is a diagonal matrix with
the diagonal defined by the encrypted vector of eigenvalues l.
The eigenvalues are ordered from the largest to the smallest.
We adapt the standard QR iteration algorithm [79], [91] to the
setting with an encrypted input matrix. The encrypted matrix
is first tridiagonalized, i.e., transformed to a matrix where the
only nonzero elements are in the diagonal, the subdiagonal, or
the superdiagonal, which is known to improve the convergence
rate of eigendecomposition [79]. The tridiagonalization is
achieved by applying Householder transformations (using
Alg. 2) to different subparts of the matrix to introduce
zeros (Lines 2 to 11 in Alg. 4). The resulting encrypted
matrix T is then iteratively factorized using QRT (Line
17) into R×Q′ (note the row-wise application of QR) and
reconstructed as Q′×R to gradually transform the matrix
into a diagonal matrix. During this process, the last diagonal
element converges to the smallest eigenvalue of the input.
This is then executed for each eigenvalue in an ascending
order, and the corresponding eigenvectors are obtained from
the product of all Q′ matrices. We perform all small-matrix
multiplications (Lines 6, 7, 8, 18) by encoding each matrix
in a single ciphertext and employing the technique of Jiang et
al. [59]. We refer to this method as M5 to distinguish from the
large-scale, unbalanced setting in M3 with ciphertext-cleartext
multiplications. Multiplying two s× s encrypted matrices
requires 5s Mults and 3s+5

√
s Rots. We convert the matrices

to our row-wise encoding scheme (in Lines 6, 9, 10, 12, 15,
17, 20, 22, 23) using one multiplication and one rotation per
row, only to efficiently perform row and column selections.
Similarly as Alg. 3, this method operates on globally shared
inputs, and its optimized communication cost scales with the
multiplicative depth divided by λ, in addition to the costs
of the HH and QRT subroutines.

6.3. Non-Polynomial Functions on Encrypted
Inputs

To approximate non-polynomial functions on chosen inter-
vals, SF-PCA’s default approach is to rely on homomorphic
evaluations of Chebyshev polynomial approximations [90].
In Step 1 (Alg. 1), the DPs agree on the intervals and
on the degree of the approximations. The complexity of
the polynomial evaluation increases with the degree but is
independent of the interval size, which influences the precision.
While any interval selection approach may be used with SF-
PCA, the approach we adopt in our evaluation in §.7 is for a DP
(e.g., the one coordinating the collaboration or the one with the
highest number of local samples) to set the intervals based on
the estimated range of intermediate values to be encountered by
running RPCA on a simulated dataset, obtained by upsampling
its local data to match the size of the joint data. In §.8, we
discuss an extension to SF-PCA that enables it to switch to
secret sharing for the evaluation of non-polynomial functions,
for which efficient bit-wise protocols exist for scaling the input
to a common range for approximation. This effectively removes
the need to choose intervals and, depending on the parameters,
can further improve SF-PCA’s accuracy (Appendix D.1).

7. System Evaluation

We show that SF-PCA, enabled by our optimization
techniques (§.5), efficiently computes a PCA on high-
dimensional inputs distributed among a large number of DPs.
We demonstrate SF-PCA’s practicality and accuracy on various
datasets with the number of features ranging from 8 to 23,724
and including up to 60,000 samples. SF-PCA consistently
obtains PCs that are highly similar (r2>0.9) to those obtained
by a standard non-secure PCA. SF-PCA also outperforms
alternative privacy-preserving approaches in terms of accuracy
and runtime, and offers stronger security guarantees compared
to some. In §.7.7, we show that, contrarily to meta-analysis,
SF-PCA remains accurate regardless of potential differences
in the data distribution among the DPs.

7.1. Formal Analysis of Costs

SF-PCA’s communication cost depends mainly on the num-
ber of features m, the number of components ρ and the number
of power iterations p. SF-PCA’s computation cost depends on
the same parameters and optionally on the number of samples
per DP ni. For both, the overall cost is amortized over the
ciphertexts due to packing and the SIMD property of HE, effec-
tively dividing the contributions of m and ni to the complexity
by the ciphertext capacity t. In Tab. 1, we show the theoretical
costs for a single DP (DPi) for each step in SF-PCA (Alg. 1).

The communication in Step 1 is due to the generation
of the public key pk and evaluation keys evks (including a
relinearization key and log2(t) rotation keys). All rotations in
SF-PCA are executed by combining rotations of power-of-two
shifts using the pre-generated keys. DBootstrap requires each
DP to transmit and receive the equivalent of a ciphertext, and
to perform one ciphertext addition (at a negligible cost). In
the remaining steps, we analyze the communication cost
in terms of the number of DBootstrap invocations, which

10

Step Comm. Computation

1 log2(t)+2.5 -
2 1·dmt e -
3 ρ·dmt e -
4 p·(ρ·dmt e p·((Precomp or Seq)+ζQR(ρ,m)); Precomp=ζ∗M(ρ,m,m)

+ζQR(ρ,m)) Seq=ζ∗M(ρ,m,ni)+ζ∗M(ρ,ni,m)

5 ρ·d ρt e
Precomp: ζ∗M(ρ,m,m)+ζ∗M(ρ,m,ρ)

Seq: ζ∗M(ρ,m,ni)+ζ∗M(ρ,ni,ρ)
6 ζEigen(ρ,ρ) ζEigen(ρ,ρ)
7 ψ·dmt e Precomp: ζ∗M(ψ,ρ,m)+ζQR(ψ,m) ; Seq:

+ζQR(ψ,m) ζ∗M(ψ,ρ,ni)+ζ∗M(ψ,ni,m)+ζQR(ψ,m)
8 - ζ∗M(ψ,m,ni)

TABLE 1: Communication and computation costs of SF-PCA (Alg. 1).
ζx(dim) returns the cost of the function x according to the dimensions
(dim). The functions’ costs are defined in §.6.1 for M, in Alg. 3 for QR
and in Alg. 4 for Eigen.

depends on the cryptographic parameters and the number of
multiplications to perform in each routine (§.6.2). In turn, the
number of multiplications depends on the input dimensions,
the degree of polynomial approximations and, for Eigen, the
number of iterations w.

SF-PCA’s overall communication cost is independent of
the number of samples and is dominated by the bootstrapping
execution. We optimize the performance of SF-PCA by
selecting the computation approach with the lowest complexity,
e.g., by choosing Precomp (whose complexity is independent
of ni) if the number of samples is large.

7.2. Implementation Details and Evaluation
Settings

We implemented SF-PCA in Go [92], building upon Lat-
tigo [93] and Onet [94], which are open-source Go libraries for
lattice-based cryptography and decentralized system develop-
ment, respectively. The communication between DPs is through
secure TCP channels (using TLS). We evaluate our prototype
based on a realistic network emulated using Mininet [95], with
a bandwidth of 1 Gbps and a communication delay of 20ms be-
tween every two nodes. Unless otherwise stated, we uniformly
and horizontally distribute the input data among 6 DPs. We de-
ploy each DP on a separate Linux machine with Intel Xeon E5-
2680 v3 CPUs running at 2.5 GHz with 24 threads on 12 cores
and 256 GB of RAM. We provide the default system param-
eters of SF-PCA considered in our evaluation in Appendix B.

7.3. Microbenchmarks for MHE Protocols in
SF-PCA

In Tab. 2, we summarize the runtimes for SF-PCA’s main ci-
phertext operations as well as high-level linear algebra routines.
Recall that each ciphertext contains up to t=213 values and
any operation is concurrently executed on all encrypted values.
Multiplying a cleartext with a ciphertext is almost 8x faster
than multiplying two ciphertexts with the default parameters.
The transmission time of a ciphertext (Send(c)) depends mostly
on the communication delay (20ms in our setting). In our
default setting, DKeyGen takes 9 seconds to generate the
public key, relinearization key, and 13 rotations keys.

7.4. Practical Scalability of SF-PCA Performance

We evaluated SF-PCA’s scalability on simulated datasets of
varying sizes. In Fig. 3, we show that SF-PCA’s runtime (when

Operation Runtime (s) Operation Runtime (s)

+ 7·10−4 M1 - (M(8×28)×Ñ(28×28)) 59

ṽ ·c 0.013 M2 - (M(8×28)×Ñ(28×28)) 51

c·c′ 0.083 M3 - (M(8×28)×Ñ(28×28)) 3.8

Rot(·) 0.08 M4 (M(8×28)×µ(1×28)) 0.7

c(1×28)•c′(1×28) 0.73 M5 - (M(8×8)×Ñ(8×8)) 0.9

QRT (M(8×28)) 117 Send(c) 0.026

DQRT (M(8×28)) 227 DBootstrap(·) 0.49

QRT (M(8×8)) 94 DKeyGen(·) 9.0

TABLE 2: SF-PCA’s micro-benchmarks with default parameters.
Send(c) transmits a ciphertext c from one DP to another. M5 refers to the
small encrypted matrix multiplication in §.6.2.

computing eight PCs with ten power iterations) remains almost
constant when the dimensions are smaller than the ciphertext
capacity t (set to 8,192 by default). It then grows linearly with
the number of ciphertexts, i.e., with the number of features
(m) and samples per DP (ni) divided by t. Note that, since
the protocol is synced among the DPs at each aggregation step,
SF-PCA’s runtime depends on the slowest DP, e.g., the DP
with the largest local dataset, as shown in Fig. 3 and Fig. 7c
in appendix. In all figures, we omit the negligible execution
times of Steps 1 to 3. These steps require mostly non-iterative
cleartext operations. In Fig. 3 (left panel), we set ni=1,024
and show that all SF-PCA’s approaches (i.e., Precomp and Seq
with QRT or DQRT) similarly scale linearly with m. Precomp
is the most efficient approach for this range of values for m
and n= 6,144 but becomes impractical with a large m. In
these experiments, we found DQRT to be consistently inferior
to QRT as the former’s communication overhead overshadows
its computational speedup. This is expected, since the compu-
tational gain of using DQRT depends on how much smaller ni
is with respect to m (see §.6.2). This difference is never large
enough to compensate for the communication overhead in our
settings. The results in Fig. 3 (right panel), for which m is set to
256, show that SF-PCA’s runtime remains constant when using
Precomp, which does not depend on the number of samples.

We remark that SF-PCA’s runtime is dominated by the time
dedicated to the communication between the DPs (Fig. 4). The
communication overhead ranges between 90% of the runtime
with small input dimensions, i.e., when the packing capacity
of the cryptoscheme is less exploited, and 45% of the runtime
when the dimensions are equal or larger than t. Although
SF-PCA is able to minimize its computation runtime with
optimized federated and parallelized computation methods,
its communication overhead is bounded by the available
communication network. When the number of DPs (s) doubles,
SF-PCA’s runtime increases only by a factor of around 1.1. This
is because the amount of local computation does not grow with
s (Table 1) and because the cost of interactive routines only
slightly increases with s. Based on Fig. 4, we estimate practical
runtimes even for hundreds of DPs, e.g., 110 minutes for 200
DPs with a maximum of 1,024 data samples per DP. We discuss
in §.8 how SF-PCA can be extended to handle availability
issues given many DPs. In Fig. 4, SF-PCA’s runtime grows
linearly with the number of components in all its steps except
in Step 6, where the eigendecomposition cost depends on the
small matrix dimensions: ρ×ρ. SF-PCA’s runtime increases
linearly with the number of power iterations; however, this
parameter typically does not grow with the data size for RPCA.

In our default scenario, SF-PCA’s runtime is multiplied by a

11

Figure 3: Runtime scaling with the number of features and samples.

Figure 4: Runtime with the number of DPs and components.

small factor of 1.1x when the available bandwidth is halved and
the communication delay doubled. Moreover, each ciphertext
accounts for 2.5 MB, thus executing SF-PCA on a dataset
with 8,192 features (or less) requires each DP to send 3.8 GB,
independently of the number of samples n (which can be large).

7.5. Accuracy of SF-PCA Results

We demonstrate SF-PCA’s accuracy and practicality on six
real datasets, including MNIST [54] and two genomic datasets
[55], [96] with thousands of patients and up to 23,724
features (see Appendix E for dataset details). We evenly and
randomly split each dataset among the DPs. In §.7.7, we
show that SF-PCA computes the same results regardless of
the data distribution among the DPs. In Tab. 5, we show that
SF-PCA and the cleartext non-secure centralized Randomized
PCA (RPCA, Fig. 1) achieve similar accuracy (according
to the mean-squared error, MSE; and Pearson Correlation
Coefficient, r2), with respect to the PCs obtained using
the standard non-secure PCA, i.e., the RPCA implemention
provided by the sklearn Python package [97].

7.6. Comparison with Existing Works

We compare SF-PCA with existing approaches for federated
or multiparty PCA, which we categorize into meta-analysis,
centralized HE (C-HE), and secret sharing-based SMC
solutions. A more detailed review of these approaches is
provided in §.2.
Meta-analysis. For comparison, we replicate the meta-
analysis approach of Liang et al [41], whereby a central
computing server performs a truncated SVD on the combined
SVD results obtained independently by each DP. In Tab. 5,
we show that this solution yields the least accurate results
across all datasets. Note that SF-PCA significantly improves
upon the accuracy of meta-analysis by emulating a centralized
PCA. Moreover, most meta-analysis solutions [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43] are not end-to-end

secure as the DPs’ intermediate results are revealed to an
aggregator server (or to the other DPs). These solutions
achieve similar runtimes as non-secure centralized solutions
because they also operate on unprotected cleartext data.

Centralized HE (C-HE). We estimate the runtime of an
HE-based centralized solution based on SF-PCA’s runtime
as follows. We account for the fact that the computations
cannot be distributed among the DPs and that all operations
must be performed on the encrypted data. Recall that SF-PCA
exploits local cleartext operations to optimize computation (e.g.,
§.6.1) and that multiplying two ciphertexts is 8 times slower
than a plaintext-ciphertext multiplication. We also include the
overhead brought by a centralized bootstrapping routine [90],
which is two orders of magnitude slower than DBootstrap,
e.g., 26 seconds for [90] vs. 0.49 seconds with DBootstrap.
Furthermore, since centralized bootstrapping consumes levels
and lowers the number of available levels for multiplications, C-
HE would require more conservative cryptographic parameters
with larger ciphertexts, and thus higher computation and
communication costs. In Tab. 5, we show the estimated lower
bound of the runtime for a C-HE solution executed by a single
DP. We remark that SF-PCA, by distributing its workload and
relying on efficient interactive protocols, is consistently 1-2
orders of magnitude faster than a C-HE solution. We note that
we consider C-HE solutions based on the same underlying
scheme of SF-PCA with comparable parameters, and that
more sophisticated centralized solutions could be devised.
However, those would still suffer from a high communication
overhead and introduce a single point of failure due to the
data centralization. Secret Sharing-based SMC. In Tab. 5,
we compare SF-PCA’s runtime with the linear (additive) secret
sharing-based SMC solution proposed by Cho et al. [45]. In
this solution, two computing servers perform PCA on secret-
shared data, and a third server is responsible for the generation
and distribution of correlated random numbers used in SMC
protocols (e.g., Beaver triples [101]). This additional party is
trusted to correctly generate these values and not to collude
with any other party. We ran Cho et al.’s publicly available,
two-party solution [102] in our evaluation environment. We
further estimated the runtime of this solution with 6 DPs under
linear scaling with the number of DPs. We observe that SF-PCA
is between 3x and 10x faster than the SMC solution while
operating in a stronger threat model without the need for an
honest third party. We also note that the SMC solution requires
the entire dataset to be secret-shared among the computing
parties, which can be costly for large datasets and complicate
regulatory compliance. For example, with the Lung dataset
[55], this represents a communication overhead of more than
60 GB. Finally, we note that SMC solutions heavily rely on
interactive computations, leading to many rounds of commu-
nication in total. Since a large portion of SF-PCA is local non-
interactive computation by each DP, SF-PCA remains practical
even in constrained networks with high communication delays,
unlike the SMC solutions. For example, when we double the
delay from 20ms to 40ms, we observed that SF-PCA’s runtime
remains almost constant, whereas the SMC solution becomes
1.9 times slower in the two-party setting. In §.8, we describe
an extension of SF-PCA which uses secret sharing specifically
for non-polynomial operations over low-dimensional inputs.

12

End-to-
end confi-
dentiality

No single-
trusted

DP

Locality
of pri-

vate data

Dataset (n×m, p,ψ,α,w)
MSE; r2; Runtime (hours)

Wine (4,898×11, Lung (9,098×23,724, Pima (767×8) Chr20 (2,502×1,773, MNIST (60,000×760, Vehicle (435×19,
15, 5, 5, 1) [98] 15, 2, 5, 5) [55] 5, 1, 1, 5) [99] 20, 2, 4, 1) [96] 40, 5, 2, 5) [54] 20, 8, 4, 5) [100]

RPCA 7 7 7 <10−6; 0.99; - 0.05; 0.99; - <10−11; 0.99; - <10−6; 0.99; - 0.3; 0.99; - 0.15; 0.99; -
Meta-an. 7 7 3 <10−2; 0.99; - 6.55; 0.7; - <10−2; 0.98; - 0.32; 0.98; - 1.48; 0.75; - 0.68; 0.99; -
SF-PCA 3 3 3 <10−6; 0.99; 0.8 0.05; 0.99; 3.5 <10−11; 0.99; 0.04 <10−6; 0.99; 0.79 0.6; 0.91; 2.22 0.24; 0.99; 0.77

C-HE 3 7 7 -; -; >11 -; -; >46 -; -; >0.7 -; -; >12 -; -; >30 -; -; >10
SMC 3 7 7 -; -; 3.0 -; -; 9.6 -; -; 0.39 -; -; 2.32 -; -; 22.66 -; -; 6.67

Figure 5: Comparison with existing works on six real datasets. MSE: mean-squared error, r2: Pearson correlation coefficient compared with ground truth PCs.

7.7. Example Application of SF-PCA in Genomics

To further demonstrate the utility of SF-PCA, we used it to
analyze a genomic dataset of 2,504 individuals with 1,773 fea-
tures (a subset of genetic variants from chromosome 20). PCA
is a standard step in many genomic analysis workflows, e.g.,
in genome-wide association studies [9], for capturing ancestry
patterns in a dataset. We split the data among three DPs such
that each DP only has samples belonging to a specific ancestry
group (Fig. 6.d). The plots show individual samples projected
onto the first two PCs. Consistent with the quantitative evalu-
ation in §.7.5, SF-PCA (Fig. 6.b) is able to accurately identify
the low-dimensional structure spanned by the data samples,
almost exactly replicating the output of a centralized cleartext
PCA on the full dataset, independently of how the data is split
among the parties (Fig. 6.a). The meta-analysis approach for
PCA (Fig. 6.c) results in a distorted data landscape due to the
limited view of each DP. In Fig. 6.d, we highlight the output of
SF-PCA that is visible to one of the DPs; while all DPs obtain
projected data according to a unified subspace identified by
the PCA, each DP sees only a portion of the output associated
with their local data as required by our security model.

í�� í� � � �� ��

í��

í�

�

�

��

3&�

3&
�

í�� í� � � �� ��

í��

í�

�

�

��
6)�3&$��*OREDO�
'3��/RFDO�9LHZ

3&�

3&
�

í�� í� � � �� ��

í��

í�

�

�

��

3&�

3&
�

í�� í� � � �� ��

í��

í�

�

�

��

3&�

3&
�

Non-Secure Centralized PCA (Global)(a)

Meta-Analysis (Global)(c)

SF-PCA (Global)

SF-PCA (DP1 Projected Data)

(b)

PC
2

PC
2

0

5

PC
2 0

5

PC
2 0

5

PC
2 0

5

0-5-10 5 10 15 0-5-10 5 10 15
PC1 PC1

0-5-10 5 10 15 0-5-10 5 10 15
PC1 PC1

í�� í� � � �� ��

í��

í�

�

�

��
6)�3&$��*OREDO�
'3��/RFDO�9LHZ

3&�

3&
�

í�� í� � � �� ��

í��

í�

�

�

��
6)�3&$��*OREDO�
'3��/RFDO�9LHZ

3&�

3&
�

í�� í� � � �� ��

í��

í�

�

�

��
6)�3&$��*OREDO�
'3��/RFDO�9LHZ

3&�

3&
�

10

-10

10

-5

-10

10

-5

-10

10

-5

(d)

-10

-5

Figure 6: Demonstration of SF-PCA on Genomic Data.

8. Extensions

SF-PCA can be extended in several ways to incorporate addi-
tional features. First, SF-PCA’s multiparty construction enables
it to seamlessly and securely (i.e., without decryption) switch
between MHE and secret sharing-based SMC [30], [31], [103]
(see Appendix D.1). This enables SF-PCA to leverage more
efficient and accurate protocols to evaluate non-polynomial
functions (e.g., sign tests) on small-dimensional inputs, while
using MHE for operations over large encrypted vectors and
matrices where the SIMD property of MHE leads to efficient
performance with minimal communication. Next, the modular
design of SF-PCA enables its federated routines to be used to

perform RPCA on vertically partitioned data (Appendix D.2).
SF-PCA could also be extended to provide differential privacy
(Appendix D.3), although setting a meaningful privacy
parameter may be difficult, by incorporating an interactive
protocol in which the DPs sequentially shuffle an encrypted
list of noise values before adding them to the results upon
decryption [104]. Lastly, to cope with the possibility of
a subset of DPs becoming unavailable during the PCA
computation—particularly relevant for the setting with many
DPs, SF-PCA can be instantiated with a threshold secret
sharing of the MHE secret key [53] to allow a subset of DPs
to continue the protocol execution (Appendix D.4).

9. Discussion and Conclusions

We introduced SF-PCA, a decentralized system for securely
and efficiently executing PCA on data held by multiple data
providers. SF-PCA ensures input confidentiality as long as
at least one DP is honest. Furthermore, the local private data
never leave the DPs’ premises given the federated design of SF-
PCA. Our system builds on a range of optimized MHE-based
routines we developed for key computational operations in PCA
such as large-scale cleartext-ciphertext matrix multiplications
and sophisticated linear algebra transformations, including
matrix factorization and orthogonalization. SF-PCA obtains
accurate results within practical runtimes on large matrices
including tens of thousands of features, and efficiently scales
with the number of data providers and the input dimensions
due to our optimization strategies.

Our work shows that an end-to-end secure solution for
high-complexity data analysis tasks such as PCA is practically
feasible. Incorporating SF-PCA into existing privacy-preserving
federated analysis methods (e.g., see Appendix G) and
deploying it in a range of practical applications are natural next
steps for our work. Our design principles and optimization
techniques that have led to the practical performance of
SF-PCA, as well as the optimized MHE routines for key linear
algebra operations such as eigendecomposition are broadly
applicable to other problems in federated analytics.

10. Acknowledgements

We thank Louis Vialar and the reviewers for their comments.
This work was partially supported by NIH R01 HG010959
(to B.B.) and by NIH DP5 OD029574, RM1 HG011558,
and Broad Institute’s Schmidt Fellowship (to H.C.). J.R.T.-P.
and J.-P.H. are co-founders of the start-up Tune Insight. All
authors declare no other competing interests.

References

[1] H. Hotelling, “Analysis of a Complex of Statistical Variables into
Principal Components.” Journal of educational psychology, 1933.

13

[2] K. Pearson, “LIII. On Lines and Planes of Closest Fit to Systems
of Points in Space,” The Philosophical Magazine, 1901.

[3] “11 Different Uses of Dim. Reduc.” https://tinyurl.com/38k9ctnf
(02.2022).

[4] D. Giri, U. R. Acharya, R. J. Martis, S. V. Sree, T.-C. Lim, T. A.
VI, and J. S. Suri, “Automated Diagnosis of Coronary Artery Disease
Affected Patients using LDA, PCA, ICA and Discrete Wavelet
Transform,” Knowledge-Based Systems, 2013.

[5] E. Gumus, N. Kilic, A. Sertbas, and O. N. Ucan, “Evaluation of Face
Recognition Techniques using PCA, Wavelets and SVM,” ESA, 2010.

[6] I. T. Jolliffe and J. Cadima, “Principal Component Analysis: a Review
and Recent Developments,” Philos. Trans. R. Soc. A, 2016.

[7] R. J. Martis, U. R. Acharya, and L. C. Min, “ECG Beat Classification
using PCA, LDA, ICA and Discrete Wavelet Transform,” BSSC, 2013.

[8] G. Pasini, “Principal Component Analysis for Stock Portfolio
Management,” Inter. Journal of Pure and Applied Mathematics, 2017.

[9] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A.
Shadick, and D. Reich, “Principal components analysis corrects for strat-
ification in genome-wide association studies,” Nature genetics, 2006.

[10] M. G. Vozalis and K. G. Margaritis, “A Recommender System
using Principal Component Analysis,” in 11th panhellenic Conf. in
informatics, 2007.

[11] “Dimensionality Reduction using PCA on Multivariate Timeseries
Data,” https://tinyurl.com/3czux5e8, (02.2022).

[12] “The PCA [...] with Time-Series,” https://tinyurl.com/54vc3cdx,
(02.2022).

[13] “Large-Scale [...] Detection ,” https://tinyurl.com/2p8u9fv3, (02.2022).
[14] C. Jing and J. Hou, “SVM and PCA Based Fault Classification Ap-

proaches for Complicated Industrial Process,” Neurocomputing, 2015.
[15] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality

of Data with Neural Networks,” Science, 2006.
[16] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction

by Locally Linear Embedding,” Science, 2000.
[17] I. K. Fodor, “A Survey of Dimension Reduction Techniques,” Tech.

re., 2002.
[18] M. L. Freedman et al., “Assessing the Impact of Population

Stratification on Genetic Association Studies,” Nature genetics, 2004.
[19] B. Hie, J. Peters, S. K. Nyquist, A. K. Shalek, B. Berger, and B. D.

Bryson, “Computational Methods for Single-Cell RNA Sequencing,”
Annual Review of Biomedical Data Science, 2020.

[20] S. Sav, J.-P. Bossuat, J. R. Troncoso-Pastoriza, M. Claassen, and J.-P.
Hubaux, “Privacy-Preserving Federated Neural Network Learning
for Disease-Associated Cell Classification,” Patterns, 2022.

[21] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, “On the Ap-
plications of Robust PCA in Image and Video Processing,” IEEE, 2018.

[22] T. Wilaiprasitporn, A. Ditthapron, K. Matchaparn, T. Tongbuasirilai,
N. Banluesombatkul, and E. Chuangsuwanich, “Affective EEG-based
Person Identification using the Deep Learning Approach,” IEEE
TCDS, 2019.

[23] “The Ambitious Effort to Piece Toghether America’s Fragmented
Health Data,” https://tinyurl.com/mtseecfk, (02.2022).

[24] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. S.
Sousa, J.-P. Bossuat, and J.-P. Hubaux, “Scalable Privacy-Preserving
Distributed Learning,” PETS, 2021.

[25] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable
Privacy-Preserving Machine Learning,” in IEEE S&P, 2017.

[26] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher,
J.-P. Bossuat, J. S. Sousa, and J.-P. Hubaux, “POSEIDON:
Privacy-Preserving Federated Neural Network Learning,” NDSS, 2021.

[27] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen:
Maliciously Secure Coopetitive Learning for Linear Models,” in IEEE
S&P, 2019.

[28] D. Froelicher, J. R. Troncoso-Pastoriza, J. L. Raisaro, M. A. Cuendet,
J. S. Sousa, H. Cho, B. Berger, J. Fellay, and J.-P. Hubaux, “Truly
privacy-preserving federated analytics for precision medicine with
multiparty homomorphic encryption,” Nature communications, vol. 12,
no. 1, pp. 1–10, 2021.

[29] J. Scheibner, J. L. Raisaro, J. R. Troncoso-Pastoriza, M. Ienca,
J. Fellay, E. Vayena, and J.-P. Hubaux, “Revolutionizing Medical Data
Sharing Using Advanced Privacy Enhancing Technologies: Technical,
Legal and Ethical Synthesis,” J Med Internet Res., 2021.

[30] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ Great
Again,” in Eurocrypt, 2018.

[31] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A Framework
for Fast Privacy-Preserving Computations,” in ESORICS, 2008.

[32] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok:
General Purpose Compilers for Secure Multi-Party Computation,” in
IEEE S&P, 2019.

[33] F. N. Abu-Khzam, N. F. Samatova, G. Ostrouchov, M. A. Langston,
and A. Geist, “Distributed Dimension Reduction Algorithms for
Widely Dispersed Data.” in IASTED PDCS, 2002.

[34] Z.-J. Bai, R. H. Chan, and F. T. Luk, “Principal Component Analysis
for Distributed Data Sets with Updating,” in APPT, 2005.

[35] M.-F. Balcan, V. Kanchanapally, Y. Liang, and D. Woodruff, “Improved
Distributed Principal Component Analysis,” Tech. Rep., 2014.

[36] Y.-M. Cheung and F. Yu, “Federated-PCA on Vertical-Partitioned
Data,” Tech. Rep., 2020.

[37] J. Fan, D. Wang, K. Wang, and Z. Zhu, “Distributed Estimation of
Principal Eigenspaces,” Annals of statistics, 2019.

[38] J. Fellus, D. Picard, and P.-H. Gosselin, “Dimensionality Reduction
in Decentralized Networks by Gossip Aggregation of Principal
Components Analyzers,” in ESANN, 2014.

[39] A. Gang, H. Raja, and W. U. Bajwa, “Fast and Communication-efficient
Distributed PCA,” in ICASSP, 2019.

[40] Y. Liang, M.-F. Balcan, and V. Kanchanapally, “Distributed PCA and
K-means Clustering,” in The Big Learning Workshop at NIPS, 2013.

[41] Y. Liang, M.-F. F. Balcan, V. Kanchanapally, and D. Woodruff, “Im-
proved Distributed Principal Component Analysis,” in NeurIPS, 2014.

[42] H. Qi, T.-W. Wang, and J. D. Birdwell, “Global Principal Component
Analysis for Dimensionality Reduction in Distributed Data Mining,”
Statistical data mining and knowledge discovery, 2004.

[43] H.-S. Won, S.-P. Kim, S. Lee, M.-J. Choi, and Y.-S. Moon, “Secure Prin-
cipal Component Analysis in Multiple Distributed Nodes,” SCN, 2016.

[44] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk, “Implementation and
Evaluation of an Algorithm for Cryptographically Private Principal
Component Analysis on Genomic Data,” IEEE/ACM TCBB, 2018.

[45] H. Cho, D. J. Wu, and B. Berger, “Secure genome-wide association
analysis using multiparty computation,” Nature biotechnology, 2018.

[46] X. Fan, G. Wang, K. Chen, X. He, and W. Xu, “PPCA: Privacy-
Preserving Principal Component Analysis Using MPC,” arXiv, 2021.

[47] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding Structure with
Randomness: Probabilistic Algorithms for Constructing Approximate
Matrix Decompositions,” SIAM review, 2011.

[48] C. Mouchet, J. R. Troncoso-pastoriza, J.-P. Bossuat, and J. P. Hubaux,
“Multiparty Homomorphic Encryption from Ring-Learning-with-Errors,”
in PETS, 2021.

[49] P. Kairouz et al., “Advances and Open Problems in Federated
Learning,” Foundations and Trends® in Machine Learning, 2021.

[50] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
and D. Wichs, “Multiparty Computation with Low Communication,
Computation and Interaction via Threshold FHE,” in Eurocrypt, 2012.

[51] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty Computation
from Threshold Homomorphic Encryption,” in Eurocrypt, 2001.

[52] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “Cloud-Assisted
Multiparty Computation from Fully Homomorphic Encryption,” ePrint,
2011.

[53] C. Mouchet, E. Bertrand, and J.-P. Hubaux, “An Efficient Threshold
Access-Structure for RLWE-Based Multiparty Homomorphic
Encryption,” ePrint, 2022.

[54] Y. LeCun and C. Cortes, “MNIST Handwritten Digit Database,”
http://yann.lecun.com/exdb/mnist/ , 2010.

[55] “GWAS of Lung Cancer Susceptibility in Never-Smoking Women
in Asia,” https://tinyurl.com/mr4b7n5y, (03.2022).

[56] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
USENIX, 2018.

[57] S. Halevi and V. Shoup, “Algorithms in HElib,” in CRYPTO, 2014.
[58] ——, “Faster Homomorphic Linear Transformations in HElib,” in

CRYPTO, 2018.
[59] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure Outsourced Matrix

Computation and Application to Neural Networks,” in ACM CCS, 2018.
[60] P. K. Mishra, D. Rathee, D. H. Duong, and M. Yasuda, “Fast Secure

Matrix Multiplications over Ring-based Homomorphic Encryption,”
ISP, 2021.

[61] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in ASIACRYPT, 2017.

[62] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption.” IACR Cryptology, 2012.

[63] Y. G. Desmedt, “Threshold cryptography,” ETT, 1994.

14

https://tinyurl.com/38k9ctnf
https://tinyurl.com/3czux5e8
https://tinyurl.com/54vc3cdx
https://tinyurl.com/2p8u9fv3
https://tinyurl.com/mtseecfk
http://yann.lecun.com/exdb/mnist/
https://tinyurl.com/mr4b7n5y

[64] R. Zhu, C. Ding, and Y. Huang, “Practical MPC+FHE with Applications
in Secure Multi-Party Neural Network Evaluation,” ePrint, 2020.

[65] T. Kim, H. Kwak, D. Lee, J. Seo, and Y. Song, “Asymptotically
Faster Multi-Key Homomorphic Encryption from Homomorphic
Gadget Decomposition,” ePrint, 2022.

[66] H. Kwak, D. Lee, Y. Song, and S. Wagh, “A Unified Framework
of Homomorphic Encryption for Multiple Parties with Non-Interactive
Setup,” ePrint, 2021.

[67] H. V. Pereira and D. F. Aranha, “Principal Component Analysis over
Encrypted Data using Homomorphic Encryption,” in WAHC, 2016.

[68] C. De Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu, “Accelerated
Stochastic Power Iteration,” PMLR, 2018.

[69] D. Garber, O. Shamir, and N. Srebro, “Communication-Efficient
Algorithms for Distributed Stochastic Principal Component Analysis,”
arXiv, 2017.

[70] A. Hartebrodt, R. Röttger, and D. B. Blumenthal, “Federated Singular
Value Decomposition for High Dimensional Data,” arXiv, 2022.

[71] S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione, “A Review of Distributed
Algorithms for Principal Component Analysis,” IEEE, 2018.

[72] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in IEEE S&P, 2019.

[73] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in IEEE
S&P, 2019.

[74] Y. Liu, C. Chen, L. Zheng, L. Wang, J. Zhou, G. Liu, and S. Yang,
“Privacy Preserving PCA for Multiparty Modeling,” arXiv, 2020.

[75] A. Grammenos, R. Mendoza-Smith, C. Mascolo, and J. Crowcroft,
“Federated Principal Component Analysis,” NeurIPS, 2019.

[76] H. Imtiaz and A. D. Sarwate, “Differentially Private Distributed
Principal Component Analysis,” in ICASSP, 2018.

[77] D. Wang and J. Xu, “Principal Component Analysis in the Local
Differential Privacy Model,” Theoretical Computer Science, 2020.

[78] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent
Items in Data Streams,” in ICALP, 2002.

[79] T.-L. Wang, “Convergence of the Tridiagonal QR Algorithm,” Linear
algebra and its applications, 2001.

[80] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors over Rings,” in EUROCRYPT, 2010.

[81] A. Costache, B. R. Curtis, E. Hales, S. Murphy, T. Ogilvie, and
R. Player, “On the Precision Loss in Approximate HE,” ePrint, 2022.

[82] Y. Lee, J.-W. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and H. Kang,
“High-Precision Bootstrapping for Approximate Homomorphic
Encryption by Error Variance Minimization,” in Eurocrypt, 2022.

[83] A. Kim, A. Papadimitriou, and Y. Polyakov, “Approximate
Homomorphic Encryption with Reduced Approximation Error,” in
RSA Conference, 2022.

[84] B. Li and D. Micciancio, “On The Security of Homomorphic
Encryption on Approximate Numbers,” in Eurocrypt, 2021.

[85] J. H. Cheon, S. Hong, and D. Kim, “Remark on the Security of
CKKS Scheme in Practice.” IACR Cryptol., 2020.

[86] L. de Castro, C. Juvekar, and V. Vaikuntanathan, “Fast Vector
Oblivious Linear Evaluation from Ring Learning with Errors.” IACR
Cryptol., 2020.

[87] D. Shanks, “Class Number, a Theory of Factorization, and Genera,”
in Proc. of Symp. Math. Soc., 1971, 1971.

[88] A. S. Householder, “Unitary Triangularization of a Nonsymmetric
Matrix,” JACM, 1958.

[89] P. L. Chebyshev, Theorie des mecanismes connus sous le nom de paral-
lelogrammes. Imprimerie de l’Academie imperiale des sciences, 1853.

[90] K. Han and D. Ki, “Better Bootstrapping for Approximate
Homomorphic Encryption,” in CT-RSA, 2020.

[91] J. M. Ortega and H. F. Kaiser, “The LL T and QR methods for
Symmetric Tridiagonal Matrices,” The Computer Journal, 1963.

[92] “Go Programming Language,” https://golang.org, (07.2022).
[93] “Lattigo,” https://github.com/tuneinsight/lattigo, (10.2022).
[94] “Cothority network library,” https://github.com/dedis/onet, (07.2022).
[95] “Mininet,” http://mininet.org, (07.2022).
[96] “The Inter. Genome Sample Resource,” https://www.

internationalgenome.org/, (03.2022).
[97] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,”

Journal of ML Research, 2011.
[98] “Wine Quality,” https://tinyurl.com/4fk83ezw, (03.2022).
[99] “Pima Indians Diabetes Dataset,” https://tinyurl.com/y8o3x8me,

(03.2022).

[100] “Statlog Vehicle Silhouettes,” https://tinyurl.com/3eet88f2, (03.2022).
[101] D. Beaver, “Efficient Multiparty Protocols Using Circuit

Randomization,” in CRYPTO, 1991.
[102] “Client Software for an End-to-End MPC Protocol for PCA,”

https://github.com/hhcho/smc-pca, (03.2022).
[103] A. Shamir, “How to Share a Secret,” Communications of the ACM,

1979.
[104] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J. Hubaux,

“Drynx: Decentralized, Secure, Verifiable System for Statistical Queries
and Machine Learning on Distributed Datasets,” IEEE TIFS, 2020.

[105] Y. Lindell, “How to Simulate It–A Tutorial on the Simulation Proof
Technique,” in Tutorials on the Foundations of Cryptography, 2017.

[106] R. Lindner and C. Peikert, “Better Key Sizes (and Attacks) for
LWE-Based Encryption,” in CT-RSA, 2011.

[107] M. Dahl, C. Ning, and T. Toft, “On Secure Two-Party Integer
Division,” in FC, 2012.

[108] O. Catrina and A. Saxena, “Secure Computation with Fixed-Point
Numbers,” in FC, 2010.

[109] P. Markstein, “Software Division and Square Root using Goldschmidt’s
Algorithms,” in RNC’6, 2004.

[110] T. Nishide and K. Ohta, “Multiparty Computation for Interval, Equality,
and Comparison Without Bit-Decomposition Protocol,” in PKC, 2007.

[111] “Anomaly Detection in Time Series Sensor Data,”
https://tinyurl.com/2p8sk8yz (02.2022).

Appendix A: CKKS
We instantiate SF-PCA’s multiparty scheme with the Cheon-

Kim-Kim-Song (CKKS) cryptosystem [61]. CKKS parameters
are denoted by the tuple (N ,∆,η,mc), where N is the ring
dimension; ∆ is the plaintext scale by which any value is mul-
tiplied before it is quantized and encrypted/encoded; η is the
standard deviation of the noise distribution; and mc represents
a chain of moduli {q0,...,qL} such that Πι∈{0,...,κ}qι =Qκ
is the ciphertext modulus at level κ, with QL the modulus of
fresh ciphertexts. Operations on a ciphertext c at level κ and
scale ∆ with ∆<Qκ are performed modulo Qκ. We denote
by {c,L,∆}, with c=(c0,c1)∈R2

QL
, and p̃∈RQL , a fresh

ciphertext at level L with scale ∆ and a plaintext, respectively.

Appendix B: Symbols & Default Values

Symbol Definition Default

s, p, w # DPs, # power and eigen iterations 6, 10, 5
ψ + α = ρ # PCs + oversampling = # components 4 + 4 = 8
ζ∗, ζ, d Optimized cost, cost, approx. degree -, -, 31
m,n,ni # features, # samples tot. & at DPi 28, 6144, 210

N , λ Ring dim., # available levels 214, 7
RQ Plain/Ciphertext domain -
c encrypted vector/ fresh ciphertext with -

c=(c0,c1)∈R2
QL

p̃∈RQL , sk, pk plaintext, secret & public keys -, -, -
t, • c capacity, dot product 213, -

M (a×b), Ñ (b×c) Generic encrypted and cleartext matrices -, -
M [i,j], v[i] Matrix/vector elem. at index (i,j)/i) -, -

TABLE 3: Glossary of Symbols and Their Default Values in
SF-PCA.

Appendix C: Security Analysis

We rely on the real/ideal simulation paradigm [105] to show
that SF-PCA achieves the input confidentiality requirement
defined in §.4. A computationally bounded adversary that
controls up to all but one DP cannot distinguish a real world
experiment, in which the adversary is given actual data
from an execution of our protocol from the views of the

15

https://golang.org
https://github.com/tuneinsight/lattigo
https://github.com/dedis/onet
http://mininet.org
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://tinyurl.com/4fk83ezw
https://tinyurl.com/y8o3x8me
https://tinyurl.com/3eet88f2
https://github.com/hhcho/smc-pca
https://tinyurl.com/2p8sk8yz

compromised DP(s), and an ideal world experiment, in which
the adversary is given random data generated by a simulator.

The semantic security of the CKKS scheme used in SF-PCA
is based on the hardness of the decisional-RLWE problem [61],
[80], [106]. Mouchet et al. [48] proved that their distributed
protocols, i.e., DKeyGen and DKeySwitch, are secure under
the simulator paradigm. They show that the distribution of the
cryptoscheme preserves its security in the passive-adversary
model with all-but-one dishonest DPs, as long as the
decisional-RLWE problem is hard. Their proofs are based
on the BFV cryptoscheme; Froelicher et al. [24] showed that
the proofs still hold with CKKS, as the same computational
assumptions hold, and the security of CKKS is based on the
same hard problem as BFV. They make a similar argument
for DBootstrap and prove its security. The security of the
cryptoscheme used by SF-PCA follows from these results.

Proposition 1. Assume that SF-PCA uses CKKS encryptions
with parameters (N , ∆, η, mc) ensuring post-quantum secu-
rity. Given a passive adversary corrupting at most s−1 parties
out of s parties in total, SF-PCA achieves input confidentiality.

Sketch of the Proof. We consider a real-world simulator S
that simulates the view of a computationally-bounded adversary
corrupting s−1 parties, i.e., it has access to the inputs and out-
puts of s−1 parties. In Step 1 of SF-PCA’s workflow (Alg. 1),
the simulator obtains the public parameters and the entire
matrix Ã, except the rows that belong to the honest DP. From
Step 1 to the end, the DPs exchange only collectively encrypted
information. In Step 8, each DP projects its local data on the
obtained collectively encrypted PCs. If required by the applica-
tion, the collectively encrypted result is switched to each DP’s
public key so that they can decrypt the final result. To avoid
information leakage about data and/or about the encryption
keys from the processed ciphertexts [84], we rely on existing
countermeasures [48], [85], [86] and add fresh noise (i.e., re-
randomizing) sampled from a distribution that has a variance
significantly larger than that of the input ciphertext’s noise
distribution to the processed ciphertext [84]. Alternatively, this
result can be kept encrypted and used for future steps without
ever being decrypted. Hence, by generating random ciphertexts
with parameters (N , ∆, η, mc), S can simulate all the values
communicated during the entire process such that the real out-
puts cannot be distinguished from the ideal ones. The sequen-
tial composition of all cryptographic functions remains simulat-
able by S as there is no dependency between the random values
that an adversary can exploit. Also, the adversary cannot de-
crypt collectively encrypted data unless all DPs collude, which
would contradict the considered threat model (§.4). Following
this, SF-PCA ensures input confidentiality for the honest DP(s).

Appendix D: Extensions
D.1. Hybrid Use of Multiparty Security Primitives

SF-PCA’s multiparty construction enables it to seamlessly
switch between MHE and secure multiparty computation
(SMC) primitives based on secret sharing [30], [31], [103]. In-
tuitively, an MHE ciphertext is transformed to linear (additive)
secret shares (LSS) through a collective masked decryption
by the DPs, i.e., each DP partially decrypts the ciphertext and
masks the result with its secret share, whereas the last DP

decrypts and obtains its share. After the computations in the
LSS domain, to transform the result back to an MHE ciphertext,
each DP encrypts its local share of the result such that it can
be aggregated under MHE with all DPs’ encrypted shares. We
detail these procedures in Protocol 1. SF-PCA always employs
MHE to execute large-dimensional matrix operations and can
perform non-polynomial operations, e.g., square root and divi-
sions (in Alg. 2), as well as small-matrix operations (in Alg. 4),
using LSS-based routines [45]. This combines the strengths of
both approaches: On the one hand, relying on edge-computing
and the SIMD property of MHE, SF-PCA efficiently performs
vectorized and parallel operations over large encrypted matrices
while minimizing communication. On the other hand, relying
on LSS-based SMC, SF-PCA simplifies its usage by removing
the need to choose intervals for non-polynomial function ap-
proximations. Note that efficient protocols exist for computing
the bit-length of a secret-shared value [107], which can be used
to map the input to a common interval for accurate approxima-
tion. In addition, LSS-based routines can be more efficient for
computation over small data, e.g., eigendecomposition of a tiny
matrix in RPCA, where the ciphertext packing is underutilized
for MHE. In SF-PCA, all costly non-polynomial operations
(e.g., see Alg. 2) are executed on a single scalar input. Thus,
executing these operations on compact secret-shared data can
further reduce the computational cost of SF-PCA.
LSS Scheme. We implemented a collection of SMC routines
used by the prior work on LSS-based PCA [45] to perform
the required non-linear operations (comparison, square root,
and division), newly extending the support to more than
two DPs and 128-bit security. These protocols build upon a
combination of existing SMC techniques [31], [101], [103],
[107], [108], [109], [110]. All values and shares are encoded
as field elements x̄ (or x̄ for a vector of elements) in Zp̄,
with p̄ a prime, by relying on a fixed-point representation
[108]. For example, with 2 parties, x∈Zp̄ is secret shared
as r∈Zp̄ and (x−r)∈Zp̄. Additions consist in simple share
additions, whereas multiplications are done by relying on
Beaver multiplication triples [101]. Following the prior work,
we adopt the server-aided model of preprocessing whereby a
third-party generates these triples to facilitate the main interac-
tive computation with efficiency. This scheme can be modified
to avoid the need of a trusted node at setup, thus following
SF-PCA’s default threat model, by relying on an interactive
protocol for the setup to be executed among all DPs. Adapting
existing solutions [30], [48] to SF-PCA is part of future work.
Protocol to Switch Between MHE and LSS. We build
on the collective bootstrapping protocol [48]. We split this
protocol in two rounds and add a conversion to/from the field
Zp̄ of the LSS scheme, see Protocol 1. We assume that DP1

wants to perform a function fLSS on the encrypted vector c.
The security of the protocol can be derived from the security
of the original DBootstrap (for which Froelicher et al. [24]
prove that statistical indistinguishability is preserved as long as
the masks are sampled from the correct distribution), from the
LSS scheme guarantees (i.e., statistical indistinguishability),
and from the security of CKKS and the hardness of the
decisional-RLWE problem [61], [80], [106].
Evaluation. Switching to LSS removes the need for defining
approximation intervals to evaluate non-polynomial functions
hence simplifies the usage of SF-PCA. Depending on the setting,

16

it can also improve SF-PCA’s accuracy. The intervals for the
non-polynomial operations depend on the DPs’ data and, as
SF-PCA’s intermediate results are repeatedly orthogonalized
(through QRT), these ranges can be accurately inferred
upfront by the DPs, e.g., by simulating the protocol (§.6.3).

Protocol 1 MHE ⇐⇒ LSS
Input: DP1 has cpk=(c0,c1)={c,τ,∆}∈R2

Qτ
a ciphertext encrypting

p̃. ν is a security parameter, ski the secret-key of each DPi, χerr a
distribution over R, where each coefficient is independently sampled from
Gaussian distribution with the standard deviation σ=3.2, and bound b6σc.
Encode(·) is the mapping from a plaintext encoded in R to the equivalent
encoding in Zp̄. Let T be the bound on all possible coefficients in the
polynomial representation of p̃ encoding real data values and l be the bound
on the possible bit length of real data values encoded in Zp̄.
Output: c′pk={c′,L,∆}
Constraints: Qτ >(s+1)·T ·2ν & (s+1)·2ν+l < p̄

1: DP1 broadcasts {c,τ,∆}
2: Each DPi for i=2, ..., s:
3: Samples ai←Uniform(RT ·2ν), ei←χerr
4: Sends hi=ski ·c1+ai+ei mod(Qτ) to DP1
5: Assigns āi=Encode(- ai) mod(p̄)
6: DP1:
7: Samples a1←Uniform(RT ·2ν), e1←χerr
8: Computes h1 =sk1 ·c1+a1+e1 mod(Qτ)
9: Computes h′ =c0+

∑s
i=1hi mod(Qτ)

10: Assigns ā1 = Encode(h′−a1) mod(p̄)
11: All DPi:
12: Compute r̄i=fLSS(āi)

13: Compute r̄i= r̄i−b̄i mod(p̄), with b̄i←Uniform(ZN/2
2ν+l

)

14: Encrypt c(i)
pk = Enc(pk,b̄i)

15: Each DPi for i=2, ..., s: Sends c(i)
pk and r̄i to DP1

16: DP1:
17: Computes r̄′=

∑s
i=1r̄i mod(p̄) and encrypts c′pk= Enc(pk,r̄′)

18: Computes c′pk=c′pk+
∑s
i=1c

(i)
pk

For example, with the MNIST dataset and the parameters
of Tab. 5, the DPs define 16 distinct intervals to evaluate
1,047 polynomial approximations. This is because the ranges
of values are constant across the dimensions and across the
iterations of the same operations. For the same dataset, relying
on SF-PCA +LSS improves the Pearson correlation between
SF-PCA’s PCs and the PCs obtained with a standard non-secure
centralized PCA from 0.91 to 0.92 (when using our default
parameters, Tab. 3). SF-PCA’s accuracy depends on the size and
degree of the intervals hence can be improved by refining these
parameters. We illustrate this on the execution of a single QRT
in Tab. 7b. We note that QRT is used (iteratively) in Steps 4, 6
and 7 of SF-PCA and that all non-polynomial operations in SF-
PCA are executed in the Householder (HH, Alg. 2) that is called
in line 2 of QRT . For QRT on a 8x8 matrix, HH is called seven
times and requires the evaluation of three non-polynomial
functions. In SF-PCA, this requires the definition of 21
approximation intervals, i.e., one per non-polynomial function.
We show that using a single large interval (with a polynomial of
degree 63; [0:1000;63]) for all operations already yields results
that are correlated with the results obtained by a cleartext
solution. SF-PCA’s accuracy can then be improved by either
downsizing the interval (to [0:100;63]), increasing the approxi-
mation degree (to [0:1000;127]), or by using more fine-grained
intervals for the different steps in the computation ([0:100;63]
for the first execution of HH and [0:1;63] afterwards).

In Fig. 7a, we show that SF-PCA’s runtime is similar with or
without this extension. SF-PCA’s computational cost is reduced

by computing on secret shares, instead of on encrypted
vectors, but this gain is overshadowed by the communication
overhead brought by both the protocol for switching between
MHE and LSS and by LSS distributed computations.
SF-PCA scales similarly with its default approach (SF-PCA in
Fig. 7a) and when switching to LSS for non-polynomial and
small-dimensional operations (SF-PCA +LSS). Switching to
LSS only for non-polynomial operations (SF-PCA +LSS-OP)
is around 1.4x slower than SF-PCA +LSS due to the
communication overhead brought by the high-number of
switches between the two schemes. SF-PCA can optimize its
runtime for the small-dimensional eigendecomposition (Step
6) by performing it entirely in the LSS domain, which is
up to 1.5x faster than in its basic approach in this scenario.
When operating on larger dimensions, i.e., in Step 4 (Alg. 1),
SF-PCA only switches to LSS for small-dimensional (i.e.,
single value as shown in Alg. 2) non-polynomial operations
as this can improve its precision. Performing sequences of
operations in LSS in Step 4 would require to switch and
operate on large-dimensional secret-shared elements, which
would further increase the communication overhead. In
Tab. 7b, we show that the runtimes of most LSS operations
are in the same order of magnitude as MHE operations.

D.2. Vertically Partitioned Data
SF-PCA’s workflow can be easily adapted to work with a

vertically partitioned input matrix by modifying the interactive
computation among the DPs while leveraging the same local op-
erations as before. Because of the different way the data is split,
some of the DPs’ intermediate results have to be combined
(aggregated or concatenated) at different points in SF-PCA’s
workflow; this does not change the nature of the underlying op-
erations that are optimized in the default setting of SF-PCA. In
the vertical case, the overall computation and communication
complexities depend on the total number of samples n and the
number of features per DP mi, whereas these depend on ni and
m in SF-PCA’s original approach. We show both approaches
in Fig. 8. The mean-centralization is up to eight times less
expensive than in SF-PCA’s original workflow, because each
DPi keeps its part of the averages’ vector õi in cleartext.

D.3. Differential Privacy
SF-PCA can be extended to provide differential privacy by

leveraging an interactive protocol in which the DPs sequentially
shuffle an encrypted list of noise values before adding them
to the results upon decryption [104]. The choice of privacy
parameters and maintaining accuracy are part of future work.

D.4. Fault Tolerance
To cope with the possibility of a subset of DPs becoming

unavailable during the PCA computation, which is particularly
relevant when there are many DPs, SF-PCA can be extended by
employing a ŝ-out-of-s threshold secret-sharing for the MHE
secret keys [53], where s is the number of DPs. Note that the
main setting of SF-PCA considers ŝ = s. Setting ŝ to be smaller
than s changes SF-PCA’s security model to tolerate up to ŝ−1
dishonest DPs. As long as at least ŝ DPs are available for each
interactive step, SF-PCA’s execution continues without interrup-
tion. In certain steps of SF-PCA the omission of a subset of par-
ties may result in their local data not being accounted for in the

17

(a) Runtime with LSS.

Operation HE-Runtime HE-Accuracy LSS-Runtime LSS-Accuracy

M5 0.9 - 0.09 -
QRT (M(8×8)) w. [0:1000; 63] 117 10−2;0.86 90 10−8;0.99

QRT (M(8×8)) w. [0:1000; 127] 117 10−3;0.99 90 10−8;0.99

QRT (M(8×8)) w. [0:100; 63] 117 10−4;0.99 90 10−8;0.99

QRT (M(8×8)) w. [0:100, 0:1; 63] 117 10−5;0.99 90 10−8;0.99
Send (c or share) 0.026 - 0.021 -

Switch MHE ↔ LSS 0.762 - - -

(b) Accuracy (MSE;r2) and runtimes (seconds) for MHE and LSS operations.

43,008 53,248 73,728 114,668 196,608
Total Number of Samples (n)

0

1

2

3

Ru
nt

im
e

(h
)

(c) Runtime w. uneven data
split.

Figure 7: In Fig. 7a, we show SF-PCA’s runtime when using LSS extension. In Tab. 7b, [0 :100;63] indicates that the approximations are done in an interval between
0 and 100 with a degree of 63. Fig. 7c depicts SF-PCA’s runtime when one DP has 32,786 data samples and the remaining samples are evenly split among 5 DPs.

𝑚

𝜌

𝜌

𝜌

𝝆

×

𝜌

×

Eigen(

×

𝜌𝑛𝑖

QRT(

𝑛𝑖

Key Setup: pk, evks = DKeyGen($)
Params. Agree.: 𝑝,𝑤, comput. app., proj. matrix

𝑛𝑖
×𝚷" i

𝜓
𝜌 𝑤

=

Step 1: Setup

Step 2: Mean Calculation

Step 3: Random Projection

Step 4: Power Iterations

Step 5: Reduction

Step 6: Eigendecomposition

Step 7: Reconstruction

Step 8: Projection

𝑚
𝜌

𝑛
𝚷" 𝑛𝑖

𝒐 𝒐*𝒊

- ×=

oT

-

+ 𝒐

× -

-×

If Precompute & Reuse:

𝑨𝒊𝑻𝑨𝒊𝑚

𝑚

×

×
𝜌

𝒁𝒊𝑛𝑖

=𝑚
𝜓

𝑾

oT

𝑚𝑚

𝑨.i

𝑚 𝑛
𝚷" 𝒐𝒊*

𝑚
𝜌

𝑚
𝑷

𝑛𝑖

𝑚 𝑨𝒊. T 𝑛𝑖

𝑚
× 𝑛𝑖

𝑚
×𝑚 𝑚 𝑨.𝒊T- × 𝒐

𝑚

𝑛𝑖

𝑚
𝑷 𝑚 𝑨.𝒊𝑻

𝑛𝑖

𝑨.𝒊

𝑚
oT

𝒐
𝑚

𝑚

𝑚
𝑷

𝑚
𝑷

𝑚
𝑷 -𝑚 𝑨.𝒊𝑻

𝑛𝑖

𝒐𝑻

𝑚

=𝑼

𝜌

𝒁
,)

𝑚
𝜓

𝑾
× -𝑚 𝑨.𝒊𝑻

𝑛𝑖

𝒐𝑻

𝑚

𝑨𝒊.

𝑨.𝒊 𝑨.𝒊

𝜌 𝜌

𝑚
𝑚

𝜌 ×𝑚

𝑚

𝑨𝒊𝑻𝑨𝒊
𝑚
𝑷𝜌 =

𝜌
𝑚
𝑷 ×

𝑚

𝑚

=𝑨𝒊𝑻𝑨𝒊

=

𝑛𝑖
𝑹𝒊 ×

𝜌

𝜌
𝑚
𝑷

𝑛𝑖
𝒁𝑻𝒊𝝆

𝑛𝑖
𝒁𝒊𝑻𝝆

𝑚
𝜓

𝑾

, DP𝒊 Private Input:

= = 𝒂𝒗𝒈(
𝑚

𝑛𝑖 𝑨.i
)Ξ(enc())

Ξ	𝑒𝑛𝑐()

×
For 𝒋 = 𝟏,… , 𝒑:

Ξ)

Else If Sequential:
For 𝒋 = 𝟏,… , 𝒑:

End For

If DQR:

Else:

𝑚
𝑷𝜌 =

𝜌
𝑛𝑖
𝑹𝒊

𝜌
𝑛𝑖
𝑹𝒊Ξ()

QRT(

=𝜌
𝑛𝑖
𝑹𝒊 DQRT(𝜌

𝑛𝑖
𝑹𝒊)

𝑚
𝑷𝜌 = 𝜌𝑛𝑖 -× 𝑨.𝒊

𝑚

𝒐
𝑚𝑛𝑖

𝑹𝒊 ×𝜌
𝑛𝑖
𝑹𝒊Ξ()

End For
End If

If Precompute & Reuse:
𝜌

𝒁
=Ξ(()×

𝜌

𝑚 𝑷
T

Else If Sequential:

=

Ξ(

) and save 𝑷𝒊! = 𝑷	×𝑨𝒊𝑻𝑨𝒊

𝜌

𝒁
=)

End If

𝜌×
𝑚
𝑷𝒊!𝜓

𝜌

𝑼
QRT()

If Precompute & Reuse:

Else If Sequential:

𝜓
𝑛𝑖

𝒀𝒊
𝜌×

𝑛𝑖
𝒁𝒊𝑻𝜓

𝜌

𝑼=
𝜓

𝑾
× -𝑨.𝒊

𝑚

𝒐

𝑚
𝜓

𝑛𝑖

𝒀𝒊
𝜓

𝑛𝑖
𝒀𝒊

x𝑛𝑖= Ξ()
End If

𝜓
𝑛𝑖

(𝑨𝒊!)𝑻

Ξ(

)

)

)

QRT()

𝑚𝑖

𝜌Eigen(

×

𝜓
𝜌 𝑤

=

Step 1: Setup

Step 2: Mean Calculation

Step 3: Random Projection

Step 4: Power Iterations

Step 5: Reduction

Step 6: Eigendecomposition

Step 7: Reconstruction

Step 8: Projection

𝑚𝑖

𝜌
𝑛
𝚷" 𝑛

𝒐*𝒊

- ×

=

𝑚𝑖

𝑨.i

𝑛
𝚷"

𝒐*i

𝑚𝑖

=𝑼

𝜌

𝒁
,)

-

𝜌

= 𝒂𝒗𝒈(

𝑚𝑖

𝑛 𝑨.i

For 𝒋 = 𝟏,… , 𝒑:

𝜓 𝑛

𝒀
×𝜓

𝜌

𝑼=

𝜓
𝑾 =

𝜓
𝑛

(𝑨𝒊!)𝑻

𝑚𝑖

𝑛 𝑨.i𝜌
𝑛
𝚷"

𝑛
𝑹𝒊𝜌 =

𝜌
𝑚𝑖

𝑷𝒊

𝜌
𝑚𝑖

𝑷𝒊

×𝑚𝑖 𝑨.𝒊𝑻
𝑛

- 𝜌
𝑚𝑖

𝑷𝒊 ×
𝒐*iT

𝑚𝑖

Ξ(

)

QRT(=

-

×

End For

𝚯(
𝑛
𝑹𝒊𝜌

𝑚𝑖

𝑛 𝑨.i

𝑛
𝑹𝒊𝜌)×

𝒐*i

𝒎𝒊

𝑛
𝒁𝑻𝜌 = 𝜌

𝑚𝑖

𝑷

× 𝑚𝑖 𝑨.𝒊𝑻
𝑛

- 𝜌
𝑚𝑖

𝑷
𝒐*iT

𝑚𝑖×

Ξ(

)

𝜌
𝜌

𝒁
=

𝑛
𝒁𝑻𝜌 𝑛 𝒁𝑻

𝜌

×

𝑛
𝒁𝑻𝜌

𝜌
𝑚𝑖

𝑷

𝜓 𝑛

𝒀
×

𝑚𝑖

𝑛 𝑨.i

- 𝜓 𝑛

𝒀
×

𝒐*i

𝑚𝑖

𝑚𝑖𝜓
𝑾

𝑚𝑖 𝑨.𝒊𝑻
𝑛

×
𝑚𝑖𝜓
𝑾

×
𝒐*iT

𝑚𝑖

DQRT(

)

)

Figure 8: SF-PCA’s secure workflow with horizontally (left) and
vertically (right) partitioned data. The execution is depicted from DPi’s
point of view. The filled boxes indicate encrypted matrices and the empty
boxes show cleartext matrices. The dimensions are shown with the box sizes
and are indicated on the left and top of the corresponding box. Ξ indicates
a collective aggregation, Θ a collective concatenation, and, in both cases,
the result is broadcast to all DPs. The dimensions equal to 1 are omitted
and vectors replicated to comply with the matrix-multiplication dimensions
are not shown. A tilde indicates cleartext.

computation. However, given the iterative nature of the RPCA
algorithm, the overall results are expected to be robust against
such omissions with a sufficient number of iterative steps.

Appendix E: Datasets
The Wine dataset [98] contains 4,898 wine samples with

physicochemical attributes as features and a quality score
as label. The Lung dataset [55] contains 9,098 patients
with 23,724 genomic variations (as features) and a label
indicating the presence of a cancer. The PIMA dataset
(768×8) [99] contains medical observations collected from
an Indian community that can be used to predict the presence
of diabetes. Chr20 (2,502×1,773) [96] is a subset of the

genomic data available in the 1,000 Genomes dataset. In the
MNIST dataset (70,000×784) [54], each sample describes
the grey-scale image of a single handwritten digit. Finally,
the Vehicle [100] dataset contains 19 features extracted from
each of the 435 images of buses or cars.

Appendix F: Runtime Scales with the Slowest
DP

We show in Figure 7c that SF-PCA’s runtime depends on
the maximum number of local samples among the DPs. In
this example, the DP with the maximum number of samples
has 32,768 samples and the other samples are evenly split
among the remaining 5 DPs. Even as the total number of
data samples increases, SF-PCA’s runtime remains constant
since the maximum number of local samples stays the same.

Appendix G: Using SF-PCA to Improve
Machine Learning Efficiency and Accuracy

By combining SF-PCA with a privacy-preserving solution
for a downstream machine learning (ML) task, a secure
federated ML workflow supporting the full analytic pipeline,
encompassing pre-processing (e.g., dimension reduction),
training, and inference, can be built. For example, SF-PCA can
be seamlessly integrated with existing MHE-based solutions
for training generalized linear models [24], [27] or neural
networks (NNs) [26]. As the training time of these solutions
increase with the number of features in the dataset, SF-PCA may
be a useful solution for reducing the scale of high-dimensional
datasets to speedup model training. For example, executing SF-
PCA on the MNIST dataset (see Tab. 5) to project it on 5 PCs
takes 1 hour and reduces the number of features by a factor
of 152. Training a model using the PCs instead of the original
features would reduce by a factor 7 the runtimes of previously
mentioned secure solutions. Such an approach can also improve
the accuracy of ML models when dimension reduction results
in noise removal and more informative features, especially in
limited data settings [111], [11], [12], [13]. We illustrate this
use case by training a NN model (i.e., a multilayer perceptron
with hidden layer made of four nodes, sigmoid activation
functions, and one output node) to perform classification on
the Vehicle dataset [100], which contains 435 samples with
18 features derived from vehicle images (Appendix E). We
observed that the model trained without any preprocessing
achieves a prediction accuracy of 55% on the test set, whereas
training the model on 5 PCs obtained by SF-PCA (applied to
the training data) as features yields an accuracy of 87%, which
increases to 97% with 8 PCs. This small example illustrates
the fact that by de-correlating the features and reducing their
number, PCA can improve ML model accuracy.

18

	1 Introduction
	2 Related Work
	2.1 Homomorphic Encryption (HE)
	2.2 Principal Component Analysis (PCA)

	3 Background
	4 SF-PCA System and Security Models
	5 SF-PCA Protocol Design
	5.1 Key Strategies for Accuracy and Efficiency
	5.2 Workflow Details

	6 Optimized Routines for Linear Algebra and Non-Polynomial Functions on Encrypted Data
	6.1 Matrix Multiplications
	6.1.1 Adaptive Strategy
	6.1.2 Unbalanced Multiplications
	6.1.3 Duplicated-Vector Multiplications
	6.1.4 Further Optimizations

	6.2 Matrix Transformations and Factorizations
	6.3 Non-Polynomial Functions on Encrypted Inputs

	7 System Evaluation
	7.1 Formal Analysis of Costs
	7.2 Implementation Details and Evaluation Settings
	7.3 Microbenchmarks for MHE Protocols in sf-pca
	7.4 Practical Scalability of sf-pca Performance
	7.5 Accuracy of SF-PCA Results
	7.6 Comparison with Existing Works
	7.7 Example Application of SF-PCA in Genomics

	8 Extensions
	9 Discussion and Conclusions
	10 Acknowledgements
	References
	Appendix A: CKKS
	Appendix B: Symbols & Default Values
	Appendix C: Security Analysis
	Appendix D: Extensions
	D.1 Hybrid Use of Multiparty Security Primitives
	D.2 Vertically Partitioned Data
	D.3 Differential Privacy
	D.4 Fault Tolerance

	Appendix E: Datasets
	Appendix F: Runtime Scales with the Slowest DP
	Appendix G: Using sf-pca to Improve Machine Learning Efficiency and Accuracy

